
Proceedings of the IEEE ICRA 2009 
Workshop on People Detection and Tracking 
Kobe, Japan, May 2009 
 

Visual People Detection – Different Models, Comparison and Discussion

Bernt Schiele, Mykhaylo Andriluka, Nikodem Majer, Stefan Roth and Christian Wojek
Department of Computer Science, TU Darmstadt

Abstract

Over the last few years, visual people detection has made
impressive progress. The paper gives an overview of some
of the most successful techniques for people detection and
also summarizes a recent quantitative comparison of sev-
eral state-of-the-art methods. As a proof-of-concept we
show that the combination of visual and laser-based peo-
ple detection can result in a significant increase in perfor-
mance. We also briefly discuss future research directions
for visual people detection.

1. Introduction
People detection is one of the most challenging prob-

lems in computer vision due to large variations caused by
articulation, viewpoint and appearance. At the same time
detecting and tracking people has a wide range of applica-
tions including robotics, image and video indexing, surveil-
lance and automotive safety. Consequently visual people
detection has been researched intensively with a rapid rate
of innovation. Recently, several researchers have reported
impressive results [23, 33, 6, 18, 1, 36] for this task.

The aim of this paper is threefold. First, we provide an
overview of some of the most successful methods for vi-
sual people detection. Second, we summarize a compara-
tive study of sliding-window techniques [35]. And third,
we show the potential of combining visual people detection
with other modalities such as laser.

Broadly speaking there are two major types of ap-
proaches for visual people detection. Sliding-window meth-
ods exhaustively scan the input images over positions and
scales independently classifying each sliding window (e.g.
[23, 33, 6]). Other methods generate hypotheses by evi-
dence aggregation often using part-based human body mod-
els (e.g. [12, 9, 21, 18, 37, 28, 1]). After discussing some
of the most successful sliding-window approaches in sec-
tion 2 we summarize a comparative study of such methods
in section 3. Section 4 briefly describes a part-based model
that has shown to outperform sliding-window techniques in
the presence of partial occlusion. Section 5 then describes
an experiment to complement visual people detection with a

laser-range finder thereby significantly reducing the number
of false positives of the visual people detector. The last sec-
tion 6 discusses promising research directions to improve
the performance of today’s visual people detection meth-
ods.

2. Sliding-window techniques
Sliding window detection systems scan the image at

all relevant positions and scales to detect a person. Con-
sequently there are two major components: the feature
component encodes the visual appearance of the person,
whereas the classifier determines for each sliding window
independently whether it contains the person or not. As
typically many positions and scales are scanned these tech-
niques are inherently computationally expensive. Fortu-
nately, due to recent advances in GPUs, real-time people de-
tection is possible as e.g. demonstrated by [34]. In [35] we
conducted a quantitative comparison that we briefly sum-
marize in section 3.

As a complete review on people detection is beyond the
scope of this work, we focus on most related work. An
early approach [23] used Haar wavelets and a polynomial
SVM while [33] used Haar-like wavelets and a cascade of
AdaBoost classifiers. Gavrila [13] employs a hierarchical
Chamfer matching strategy to detect people. Recent work
often employs statistics on image gradients for people de-
tection. [30] uses edge orientation histograms in conjunc-
tion with SVMs while [6] uses an object description based
on overlapping histograms of gradients. [27] employs lo-
cally learned features in an AdaBoost framework and Tuzel
[32] presents a system that exploits covariance statistics on
gradients in a boosting classification setting. Interestingly,
most approaches use discriminant classifiers such as Ada-
Boost or SVMs while the underlying object descriptors use
a diverse set of features. Therefore the following section
briefly describe some of these features in more detail.

Haar wavelets have first been proposed by Papageor-
giou and Poggio [23]. They introduce a dense overcomplete
representation using wavelets at the scale of 16 and 32 pixel
with an overlap of 75%. Three different types are used,
which allow to encode low frequency changes in contrast:
vertical, horizontal and diagonal. Thus, the overall length of
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the feature vector for a 64× 128 pixel detection window is
1326 dimensions. In order to cope with lighting differences,
for each color channel only the maximum response is kept
and normalization is performed according to the window’s
mean response for each direction. Additionally, the origi-
nal authors report that for the class of people the wavelet
coefficient’s sign is not carrying information due to the va-
riety in clothing. Hence, only the absolute values for each
coefficient is kept. During our experiments we found that
an additional L2 length normalization with regularization
of the feature vector improves performance.

Histograms of oriented gradients have been proposed
by Dalal and Triggs [6]. Image derivatives are computed
by centered differences in x- and y direction. The gradient
magnitude is then inserted into cell histograms (8 × 8 pix-
els), interpolating in x, y and orientation. Blocks are groups
of 2 × 2 cells with an overlap of one cell in each direc-
tion. Blocks are L2 length normalized with an additional
hysteresis step to avoid one gradient entry to dominate the
feature vector. The final vector is constituted of all norma-
lized block histograms with a total dimension of 3780 for a
64× 128 detection window.

Shape Context has originally been proposed as a fea-
ture point descriptor [4] and has shown excellent results for
people detection in the generative ISM framework [18, 28].
The descriptor is based on edges which are extracted with a
Canny detector. Those are stored in a log-polar histogram
with location being quantized in nine bins. For the radius
9, 16 and 23 pixels are used, while orientation is quantized
into four bins. For sliding window search we densly sam-
pled on a regular lattice with a support of 32 pixels (other
scales in the range from 16 to 48 pixels performed worse).
For our implementation we used the version of Mikolajczyk
[20] which additionally applies PCA to reduce the feature
dimensionality to 36 dimensions. The overall length of all
descriptors concatenated for one test window is 3024.

Classifiers. The second major component for sliding-
window approaches is the deployed classifier. For the clas-
sification of single windows two popular choices are SVMs
and decision tree stumps in conjunction with the AdaBoost
framework. SVMs optimize a hyperplane to separate posi-
tive and negative training samples based on the global fea-
ture vector. Different kernels map the classification problem
to a higher dimensional feature space. For our experiments
we used the implementation SVM Light [16]. In contrast,
boosting is picking single entries of the feature vector with
the highest discriminative power in order to minimize the
classification error in each round.

3. Comparison of sliding-window techniques
In [35] we conducted a systematic evaluation of different

feature/classifier combinations. For this we reimplemented
the respective features and classifiers. Comparisons with

published binaries (whenever available) verified that our
reimplementations perform at least as good as the originally
proposed feature/classifier combinations. In the following
we report on some of the results that illustrate the state-of-
the-art in sliding window based detection techniques.

To evaluate the performance for the introduced features
and their combination with different classifiers we use the
established INRIA Person dataset 1. This data set contains
images of humans taken from several viewpoints under
varying lighting conditions in indoor and outdoor scenes.
Unlike the original authors [6] we test the trained detectors
on the full images. We do so, in order not only to evaluate
the detector in terms of false positive detections per win-
dow (FPPW) but with respect to their frequency and spatial
distribution. This gives a more realistic assessment on how
well a detector performs for real image statistics. For fur-
ther details see [35]

Due to space constraints we cannot report all the quanti-
tative results from [35]. However, we still report the major
results and figure 1 contains the results for four different
settings.
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Figure 1. Recall-Precision detector performances for different fea-
tures (Haar, HOG, Dense Shape Context, combination of Dense
Shape Context and Haar) and linear SVM-classifier

Single feature detection. We start by summarizing the
evaluation of using all features individually in combination
with the three classifiers AdaBoost, linear SVM and RBF
kernel SVM. First of all, the HOG descriptor and the similar
Shape Context descriptor consistently outperform the other
features (e.g. Haar-like features) independent of the learn-
ing algorithm. Overall, RBF kernel SVMs together with the
gradient-based features HOG and Shape Context show the
best results. All features except shapelets show better per-
formance with the RBF kernel SVM compared to the lin-
ear SVM. AdaBoost achieves a similarly good performance
in comparison with RBF kernel SVMs in particular for the
Haar-like wavelet, the HOG feature and for shapelets. It
does slightly worse for the dense Shape Context descriptor.

1http://pascal.inrialpes.fr/data/human
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Multi-cue detection. A closer look on the single de-
tectors’ complementarity reveals that different features in
combination with different classifiers have a varying perfor-
mance on the individual instances. This can be explained
by the fact, that the features encode different information.
While gradients encode high frequency changes in the im-
ages, Haar wavelets as they are proposed by [23] also en-
code much lower frequencies. Figure 1 shows the combi-
nation of dense Shape Context features with Haar wavelets.
In particular figure 1 shows, that in fact both features on
their own cannot reach the performance that is reached with
their combination. Compared to the state-of-the-art HOG
object detector we improve recall considerably about 10%
at 80% precision. Figure 2 shows sample detections of this
multi-cue detector.

Figure 2. Sample detections at a precision of 80%. Red bound-
ing boxes denote false detections, while yellow bounding boxes
denote true positives. First row shows detection by the publically
available HOG detector[6]; second row depicts sample detections
for our combination of dense Shape Context with Haar wavelets in
a linear SVM

Failure analysis. To get a feeling about the achievable
performance of sliding-window based techniques we com-
plete our brief summary with a failure case analysis. In par-
ticular, we analyzed the missing recall and the false positive
detections at equal error rate (149 missing detections / 149
false positives) for the feature combination of Shape Con-
text and Haar wavelets in combination with a linear SVM.
Missing recall mainly occurred due to unusual articulations
(37 cases), difficult background or contrast (44 cases), oc-
clusion or carried bags (43 cases), under- or overexposure
(18 cases) and due to detection at too large or too small
scales (7). There were also 3 cases which were detected
with the correct height but could not be matched to the an-
notation according to the PASCAL criterion due to the very
narrow annotation.

False positive detections can be categorized as follows:
Vertical structures like poles or street signs (54 cases), clut-
tered background (31 cases), too large scale detections with
people in lower part (24 cases), too low scale on body parts
(28 cases). There were also a couple of “false” detec-
tions (12 cases) on people which were not annotated in the
database (mostly due to occlusion or at small scales). Some
samples of missed people and false positives are shown in
figure 3.

(a) Unusual articulation (b) Difficult contrast (c) Occlusion
(d) Person carrying

goods

(e) Detection on parts (f) Too large scale
(g) Detection on vertical

structures

(h) Cluttered

background

(i) Missing

annotation

Figure 3. Missed recall (upper row) and false positive detections
(lower row) at equal error rate

4. Part-based models for people detection

Part-based models have a long history in computer vision
for object detection in general and for people detection in
particular (e.g. [12, 9, 21, 18, 37, 28, 1]). There are two
major components of these models. The first uses low-level
features or classifiers to model individual parts or limbs of a
person. The second component models the topology of the
human body to enable the accumulation of part evidence.

A wide range of models have been proposed e.g. for
upright people detection in traffic scenes [18], to estimate
the pose of highly articulated people (e.g. in sports scenes
[25]), or for upper body detection and pose estimation [11],
e.g. for movie indexing. In this section we briefly summa-
rize one of our own models [1] that builds upon and extends
a number of previous approaches. The model is inspired
by the pictorial structures model proposed by [10, 15], but
uses more powerful part representations and detections, and
as we will show outperforms recent pedestrian detectors
[6, 28].

A part-based person model [1]. Following the gen-
eral pictorial structures idea, a person is represented as a
joint configuration of her body parts. In such a model the
problem of locating a person in a test image is formulated
as search for the modes of the posterior probability distri-
bution p(L|E) of the body part configuration L given the
image evidence E and (implicit) class-dependent model pa-
rameters θ. In our model, the configuration is described as
L = {xo,x1, . . . ,xN}, where xo is the position of the body
center and its scale, and xi is the position and scale of body
part i. The image evidence, which here is defined as a set
of local features observed in the test image, will be denoted
as E = {eapp

k , epos
k |k = 1, . . . ,K}, where eapp

k is an ap-
pearance descriptor, and epos

k is the position and scale of the
local image feature with index k.

An important component of the pictorial structures
model is an implicit model of a-priori knowledge about pos-
sible body configurations, which must be expressive enough
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Figure 4. Comparison of our pedestrian detector with 4D-ISM de-
tector [29] and HOG [6].

to capture all important dependencies between parts. For
particular object categories, such as walking people, we can
introduce auxiliary state variables that represent the artic-
ulation state or an aspect of the object, such as different
phases in the walking cycle of a person [17], and make the
parts conditionally independent. As we are not interested in
knowing the articulation state, but only the object and limb
positions, the articulation state a can be marginalized out:
p(L|E) =

∑
a p(L|a,E)p(a).

From decomposing p(L|a,E) ∝ p(E|L, a)p(L|a),
assuming that the configuration likelihood can be ap-
proximated with product of individual part likelihoods
[10] p(E|L, a) ≈

∏
i p(E|xi, a), and assuming uniform

p(xi|a), it follows that

p(L|a,E) ≈ p(xo)
∏

i

p(xi|a,E)p(xi|xo, a). (1)

Figure 5. Graphical model structure describing the relation be-
tween articulation, parts, and features.

Please refer to [1] for the details concerning model train-
ing and inference. In the experiment (as presented in de-
tail in [1]) we use shape context feature descriptors [3] and
the Hessian-Laplace interest point operator [19] as detector.
Ee compare the above detector on a challenging dataset of
street scenes containing 311 side-view pedestrians with sig-
nificant variation in clothing and articulation2. Fig. 4 shows
the comparison of our detector with two state-of-the-art de-
tectors. Using the same training set as [28] our detector

2Available at www.mis.informatik.tu-darmstadt.de.

Figure 6. Example detections at equal error rate of our detec-
tor (top), 4D-ISM (middle) and HOG (bottom) on the “TUD-
Pedestrians” dataset.

outperforms the 4D-ISM approach [28] as well as the HOG-
detector [6]. Increasing the size of the training set further
improves performance significantly.

Fig. 6 shows sample detections of the 3 methods on test
images. The 4D-ISM detector is specifically designed to
detect people in cluttered scenes with partial occlusions. Its
drawback is that it tends to produce hypotheses even when
little image evidence is available (image 3 and 4), which re-
sults in increased number of false positives. The HOG de-
tector seems to have difficulties with the high variety in ar-
ticulations and appearance present in out dataset. However,
we should note that it is a multi-view detector designed to
solve a more general problem than we consider here.

Summary. From these experiment we can conclude that
part-based people model can outperform sliding-window
based methods (such as HOG) in the presence of partial
occlusion and significant articulations. It should be noted
however, that part-based models tend to require a higher res-
olution of the person in the image than most sliding-window
based approaches.

5. Combining vision and laser to improve peo-
ple detection

Cameras are not the only sensor that can be used for peo-
ple detection. In robotics laser range scanners are widely
used for tasks like localization and position estimation but
have been also used for people detection [2] and place clas-
sification [22]. Recent approaches to fuse visual and laser
information for classification and object detection tasks
show promising results [26, 24, 38, 31]. This section ex-
plores a simple yet effective technique to combine vision
and laser information for improved people detection. As
visual people detection is never perfect laser range infor-
mation is used to constrain the search space of plausible
hypotheses.

Setting. The platform used for data acquisition is a Peo-
pleBot that runs a distributed component architecture devel-
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oped during the CoSy project. The robot is equipped with a
SICK LMS (180◦ fov, 1◦ angular resolution) mounted ap-
proximately 30 cm above the floor and a color camera stereo
head located 97cm above the LMS. Only one camera is used
for visual people detection. The camera is calibrated using
the CALIB toolbox [5] while the transformation parameters
between the camera and the LMS coordinate system are set
by measuring the robots geometry.

Approach. In this section we use a sliding-window ap-
proach for people detection where we choose the HOG de-
scriptor as feature and a linear SVM as classifier (see sec-
tion 2). To achieve good generalization performance in var-
ious environments we decided to train the classifier on the
INRIA people data set (see section 3). As expected the vi-
sual people detector already achieves good results. Figure 7
shows sample detections as well as typical false positive de-
tections e.g. on partial people or vertical edge structures.

Many false positive detections do not fulfill simple con-
straints assuming that people usually walk on the floor and
therefore the object scale is proportional to distance. This
assumption can be formulated with the following two con-
straints to prune the space of valid hypotheses obtained
from the HOG detection stage; (1): laser range measure-
ments projected onto the image plane should hit the lower
third (legs) of the detection window hi. We denote the set
of the associated range values that meet this condition with
Ri. And (2): detection scale si of hi is bounded by a factor
proportional to the largest/smallest distance measurement
found in Ri : s∗/min(Ri) + c > si > s∗/max(Ri) − c
where s∗ is a scale estimate at 1m distance and c is a small
constant accounting for errors in scale estimations. Both pa-
rameters are in pixel units and dependent on camera param-
eters. Since all detection hypotheses have the same aspect
ratio we set si to the detection window width.We initially
set s∗ to 550 and c to 25. These values are estimated from a
subset of the recorded data.

If a visual person hypothesis does not meet these con-

(a) (b) (c)
Figure 7. The PeopleBot Robot (a). Typical false positives from
visual people detection (b). Rejection by simple range based con-
straints (c).

straints it is rejected. Figure 7(c) shows the effect of reject-
ing hypotheses that do not match these two constraints.

Evaluation. We evaluate this simple procedure on two
sequences. Sequence (A) (samples shown in figures 7(b)
and 9(c)) is recorded in an office sized room and sequence
(B) (samples shown in figures 9(a) and 10) in a large foyer
of a university building. Ground truth is annotated man-
ually in form of bounding boxes and is quite complete in
the sense that occluded people or people entering the visual
field are also annotated if approximately half of the person
is visible. As a consequence we cannnot expect to reach
full recall. For both sequences the robot was placed to have
a good visual view of the scene. Due to the nature of the
concurrent distributed component architecture the sampling
process for each sensor is asynchronous and tends to vary
slightly with the overall system load. We aligned the laser
and the vision sensor in a semi-automatic fashion such that
each image frame is associated to the laser scan with the
smallest temporal difference.

Sequence A. This sequence consists of 1023 image
frames sampled at 2.5 Hz on average while laser recordings
reach 20.8 Hz. The environment is an office sized room with
people entering and leaving the room through two door-
ways. People might occlude each other and be occluded
by the wall. Figure 8(a) shows the detection performance
for this sequence.The HOG detector reaches a maximal re-
call of 89.2% with a precision of 67.3% The equal error rate
(EER) is 82.2%. The use of laser range information clearly
improves precision to 95% with a loss smaller than 0.25%
in maximally achievable recall.

Sequence B. The second sequence consists of 124 im-
ages sampled at 0.7 Hz on average while laser recordings
reach 37.5 Hz. In this sequence more people appear also at
large scales so that they are not fully visible. The HOG de-
tector reaches a maximal recall of 87.1% with a precision of
56% The EER is 81.7%. Laser range information improves
precision to 92.8% at 83.9% recall (i.e. 3.2% loss in recall).

Loss of recall is a sign that the posed constrains are not
necessarily true for all ground truth instances. This hap-
pens in cases where a true positive hypothesis occludes the
laser which leads to rejection of a true positive detection at a
smaller scale due to the missing laser readings. Not achiev-
ing full precision means that cases occur where false posi-
tive detections fulfill the laser constraints. This happens if
multiple hypotheses at similar scales are found as true pos-
itive hypotheses or if a false positive hypothesis and laser
range readings fulfill the constraints by chance. See Figure
9 for failure cases and figure 10 for sample detections.

Conclusion. Overall, in terms of EER, the proposed
combination of camera and laser information improves pre-
cision/recall by 12.8% / 7 % on sequence A and 11.1% / 2.2
% on sequence B. This improvement is clearly signifi-
cant and highly encouraging given the simplicity of the de-
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Figure 8. Detection performance for test sequences A and B. HOG detection in blue. Laser constrained HOG in red.

(a) (b)

(c) (d)
Figure 9. Visual detection only (a) & (c). Laser constrained de-
tections (b) & (d). The laser range based constraints correct one
false positive but also reject one true positive detection. True pos-
itive detections are marked yellow, missed objects blue and false
detections are red.

scribed algorithm. We believe that this clearly demonstrates
the potential to combine camera and laser information and
that more elaborate algorithms should enable to improve
performance further.

6. Conclusion and discussion

The primary aim of this paper was to give an overview
of promising techniques for visual people detection (sec-
tions 2–4). In recent years the field has been moving
rapidly thereby continuously improving detection perfor-
mance. Given today’s state-of-the-art in visual people de-
tection it is clear however that the currently achievable
performance is often neither sufficient nor satisfactory for
many applications. In this last section we briefly discuss

several research directions that have the potential to im-
prove overall performance.

Motion cues. It is clear that human motion is an impor-
tant cue for people detection. Quite surprisingly however,
motion is seldom used for people detection. Notable excep-
tions are the work by Viola et. al [33], Dalal and Triggs [7]
and Wojek et al. [36]. All three papers clearly demonstrate
the potential gain when using motion information for visual
people detection. However, we strongly believe that the cur-
rent approaches still leave room for further improvement.

Integration of detection and tracking. Both detection
and tracking people are challenging problems. People de-
tectors have been shown to be able to locate pedestrians
even in complex scenes, but false positives have remained
frequent. Tracking methods are able to find a particular in-
dividual in image sequences, but are severely challenged by
real-world scenarios such as crowded scenes. Therefore it
is a promising research direction to combine the advantages

Figure 10. HOG hypotheses thresholded at EER on the left. Laser
constrained hypotheses on the right.
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of both detection and tracking in a single framework. In
[1] we have proposed such an integrated framework that al-
lows to detect and track multiple people in cluttered scenes
with reoccurring occlusions. While this research direction
is again largely under-explored we strongly believe that this
is a highly promising route to pursue.

System integration. It seems clear that the integration
of all of the above mentioned information into a single over-
all system has the potential to obtain an improved overall
performance. Due to the complexity of this task however
relatively view such systems exist. Probably the best known
examples are the system by Gavrila and colleagues [14] and
more recently the work by Ess and colleagues [8]. In these
systems different components are integrated such as stereo
and depth estimation, structure from motion, texture based
classifiers and part-based people detectors.

Combination with other sensor modalities. Section 5
already demonstrated the potential of combining vision and
laser information to improve overall detection performance.
While this research direction has gained attention recently
[26, 24, 38, 31] it is again under-explored and has the poten-
tial to enable robust people detection e.g. for robotics and
automative applications.
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