Proceedings of the IEEE ICRA 2009
Workshop on People Detection and Tracking
Kobe, Japan, May 2009

Multi-target Tracking on a Large Scale: Experiences from Football Player
Tracking

J. Sullivan, P. Nillius and Stefan Carlsson,
Royal Institute of Technology,
Stockholm, Sweden.

Abstract

Multi-target tracking requires locating the targets and la-
beling their identities. The latter is a challenge when many
targets, with indistinct appearances, frequently occlude one
another, as in football and surveillance tracking. We present
an approach to solving this labeling problem.

When isolated, a target can be tracked and its identity
maintained. While, if targets interact this is not always the
case. We build a track graph which denotes when targets
are isolated and describes how they interact. Measures of
similarity between isolated tracks are defined. The goal is to
associate the identities of the isolated tracks, by exploiting
the graph constraints and similarity measures.

We formulate this as a Bayesian network inference prob-
lem, allowing us to use standard message propagation to
find the most probable set of paths in an efficient way. The
high complexity inevitable in large problems is gracefully
reduced by removing dependency links between tracks. We
apply the method to a 10 min sequence of an international
football game and compare results to ground truth.

1. Introduction

A multi-target tracking system capable of analyzing
hours of footage reliably and robustly could potentially help
automate many useful applications. There are numerous
situations involving people/objects moving and interacting
in a particular domain where the tracks of the targets over
time provide a rich source of information for analysis of be-
havior. Such domains include - traffic-pedestrian junctions,
travelers at airports, insect/animal tracking and team games.

However, automatic visual multi-target tracking in such
domains with frequent interactions is a challenging prob-
lem (even when only considering instances with favorable
viewing conditions). Given long enough sequences, situ-
ations will arise where it is not possible to reliably main-
tain a target’s identity, when it occludes and/or is occluded
by other targets, using continuity of appearance or motion

alone. Some form of identity re-initialization is required
when the interacting targets separate. This re-initialization
can take the form of linking tracks before and after the in-
teraction based on matching certain properties of the tracks
involved. This in essence is the approach taken in this paper.

We see multi-target tracking as a two-stage process,
when there are no real-time constraints. Initially targets are
detected and tracked using background subtraction and con-
tinuity of motion constraints. When two or more targets
meet and cannot be disambiguated a new track is formed
and follows this target group. The process is repeated for
all targets throughout the sequence. The result is a track
graph with the different tracks as nodes and edges denoting
how the tracks split and merge into new tracks.

In the second stage we try to find each target’s path
through the graph. This is achieved by exploiting the con-
straints imposed by the graph structure and by the feature
vectors extracted to describe the appearance (e.g. image
intensity, gait patterns) of each track. We view this as an in-
ference problem where we want to find the most likely set of
paths for the targets given the appearance of the tracks. This
can be solved efficiently using Bayesian network inference.

For long sequences, with many targets, finding the global
optimum of the resulting posterior becomes intractable due
to the combinatorial explosion that occurs with the numer-
ous split and merge situations. We solve this by reducing
the dependencies between the tracks. In effect it means that
similarities between tracks are only used for tracks within
a certain time window. The size of this time window can
be set dynamically to meet set criteria for complexity and
memory use.

Over the last couple of years, many algorithms and re-
sults have been presented [7, 4] with regard to the problem
of multiple object tracking. Prevalent are algorithms based
on kalman filtering [12, 6], advanced techniques of particle
filtering [1 1, 10, 9, 3] and multiple-hypothesis trackers [4].
The quality of the results presented though improving have
yet to be shown working robustly on long sequences (>30
secs). Therefore, one of our major contributions is that we
evaluate the performance of our method on a continuous 10



minute clip of an international football match and demon-
strate its viability in solving large scale problems. The re-
sults obtained are promising.

1.1. Paper Overview

The paper is organized as follows. Section 2.1 provides
a more detailed review of the track graph, mentioned in
the introduction, the assumed starting point of our target
linking algorithm. Section 2.2 describes the problem we
wish to solve, of linking the identities of the nodes in our
track graph. In Section 2.3 the solution space, imposed by
the track graph, is defined and parameterized. Section 2.4
states the problem as an inference problem and shows how
Bayesian network inference can be used to find the solu-
tion. For large problems containing thousands of nodes it
is necessary to find an approximate solution. Section 2.4.1
discusses how this can be done by assuming independence
between nodes distant in time. Section 3 reports on apply-
ing our method to football tracking. The experimental set-
up is described, as well as a brief review of how the track
graph is constructed. The results of the path finding are then
presented. To finish conclusions are made focusing on the
quality of the results obtained and upon the scalability and
generic nature of the solution put forward in the paper. Also
discussed are possible improvements and future avenues of
research involving combining unsupervised clustering and
our path finding algorithm to provide a complete solution to
the labeling problem.

2. Linking Identities in the Track Graph
2.1. Preliminaries

The theory in this paper assumes we have access to a
track graph summarizing the interactions that occur be-
tween the targets in the sequence being analyzed. There-
fore, before proceeding further we must introduce more for-
mally the concept of the track graph. Each node in the
graph represents a track. A track is a temporal sequence
of image regions, one per frame (see figure 1). Each re-
gion corresponds to the spatial extent of one or more targets.
During a track neither the number of targets it represents
changes nor do the identities of these targets. The edges in
the graph indicate when

e the targets from separate tracks merge (due to partial
occlusion) to begin a new track or

o the targets in a track separate/split to begin several new
tracks, each with fewer targets than the parent one.

Figure 2 displays a small example of such a track graph.
The white nodes indicate tracks of a single target and grey
those representing multiple targets.

.I o [
A

Single player track
| . . - | .
"”n
Multiple player track

Figure 1. Single and multiple target tracks from a football game.
The top row shows a single target track, shown in white. The
bottom row is a multiple target track, shown in black. Tracks are
sandwiched between interactions with other tracks. During a track
the number of targets involved and their identities remain fixed.

There are, of course, numerous possible ways to obtain
this graph [1]. For now though this issue is set aside and as-
sumed to have been solved, however, we revisit it in section
3 while reviewing the methods put forward in [1].

1 1
Figure 2. An example of a simple track graph. Each node cor-
responds to a track: white - an individual target, grey - multiple

targets. The edges of the graph are directed corresponding to the
temporal constraints and indicate when tracks merge or separate.

2.2. General Approach

On top of the track graph it is assumed that there are fea-
ture vectors measured from each single target track. These
feature vectors can consist of elements such as color, shape,
position and velocity. Using the feature vectors to compare
tracks and the constraints imposed by the track graph we
find the most likely configuration of paths. To do this we
parameterize the solution space imposed by the track graph



so that we have a state vector that can represent all possible
configuration of paths through the track graph. The paths
are then found by inferring the state given the features of
the tracks.

2.3. The solution space

Each targets path through the graph is known when it
is known exactly how the incoming targets are distributed
into the outgoing tracks when a track is split up. Therefore,
we will represent the solution space by viewing the splits as
track switches. Each split/switch has a state variable rep-
resenting how the targets are distributed into the outgoing
tracks.

When defining the state variables of the split nodes care
must be taken so that the state space becomes as compact
as possible. Each set of values of the state variables should
correspond to one unique solution. This can be done in the
following way.

Let N be the number of incoming targets for a particu-
lar split node. It doesn’t matter how many incoming tracks
the node has, so we can assume it has one single incom-
ing track, as in Figure 3. Moreover, let the node have m
outgoing tracks, each having n;,j = 1,...,m targets also
summing up to a total of N targets.

Figure 3. The size of the state variable of a split node is determined
by the number of outgoing tracks and how many targets, n; are in
each track 1.

The number of ways to distribute the targets into the out-
going tracks can be found through a process of iteratively
selecting the targets to go into a track. Each track ¢ selects
n; targets from the targets not yet selected. In this way each
track can select its targets in (N _Zn;_;i "j) different ways.
Hence, the total number of states of the split node is

(N -
mes)

Note that the incoming targets is considered an ordered
set while the selection in the process above is unordered. To
define the ordering in the outgoing tracks we let them keep

their relative ordering within each outgoing track, as illus-
trated with the example in Figure 4. This avoids getting re-

| Ci |
@\ /2&\ )

Figure 4. All three states of a node splitting three incoming targets
into one double and one single target track.

dundant states, which would happen when two targets in the
same track are switched in one split node and then switched
back when entering a subsequent split node, which is equiv-
alent to the targets not getting switched in either node.

The variable representing the split state of the node is a
product of the “selection states” of the outgoing tracks of
the node. Getting the selection states from the node state is
a matter of using integer divisions and the modulo operator.

Let each split node, T, have a discrete state variable S;
which represents exactly how the targets are split into the
outgoing tracks. The number of values S; can take is given
by (1). Moreover, let

S ={S;; T; is a split node} (2)

be the set of state variables for all the split nodes. Then S
can represent all possible solutions of paths given the track
graph. There is also a one-to-one mapping between the val-
ues of the state variables and the solution space.

2.3.1 Computing the number of targets in the tracks

This section described how the number of targets in each
link is computed. Let [;; be the link count, i.e. the number
of targets in the link between tracks 7; and T5.

1. Let all link counts be undefined, /;; = 0.

2. Set link counts to all single tracks to one,
l;; =1, T; connected to Tj and (7} or T} are single track)

3. For nodes with all links but one defined, set the undefined
link so that number of targets in equals number of targets
out.

4. . Repeat 3 until no more links are updated.

The above procedure will propagate the number of tar-
gets through the track graph. In practice there will be in-
consistencies and some links will be left undefined. These
parts of the graph are left unresolved at this point, but there
are several possibilities how they could be handled in the
future, e.g. by better modeling or by merging nodes.



2.4. The Inference Problem
Let each single track ¢ have feature vector A; and let
A = {A;;T; is a single target track} 3)

be the set of all feature vectors.
We would like to infer the paths given the measurements
using the max posterior estimate,

S = argmax P(S|A). 4)
s

As usual, Bayes formula can be used to instead maximize
the product of the prior and the likelihood function.

P(S|A) x P(A|S)P(S) )

The split node state variables S are local and causally
independent. The measurements on the other hand, depend
on the state variables in the sense that the values of the state
variables define the targets’ paths. Tracks on the same path
contain the same target, hence their measurements are de-
pendent. Measurements from different targets are assumed
to be independent.

We note that every path ends at a tail node, i.e. a node
with no outgoing links. The tail nodes are used as represen-
tatives for the paths. Let

Ataits = {As; Tj is a tail node} (6)
be the set of tail node features. Further, let

path(A;, s) = {A4;;T; are on the same path as T; o

given § = s}
be the feature vectors of all tracks on the path defined by
the state s and leading to the track 7;. Then the likelihood
function can be factorized as

PAIS)= [] P(rath(4;,s)S=5). ®)
Ai€EAqils

The dependencies between state variables and feature
vectors can be viewed in a Bayesian network showing the
causal dependencies between the nodes. The track graph in
Figure 2 has the Bayesian network in Figure 5.

Inference on a Bayesian network can be done efficiently
using message propagation. We use the junction tree algo-
rithm, [2, 5]. This algorithm creates a secondary structure,
the junction tree, consisting of cliques and sepsets. The
cliques are the smallest sets of variables on which the in-
ference can be solved using local computations and mes-
sage propagation. The sepsets show the common variables
between neighboring cliques which are the margins that is
computed when performing the message propagation.

The most probable configuration of a Bayes net can be
found by using max-marginalization in the message prop-
agation. We have used Kevin Murphy’s implementation in
the Bayes Net Toolbox for Matlab [8]. All we have to pro-
vide are the likelihoods for the cliques and the priors.

5657 - e 5657512516
path(A9) path(A10) 5687512 path(A17) path(A18)

Figure 5. Bayesian network (a) and junction tree (b) for the track
graph in Figure 2

2.4.1 Reducing complexity

Message propagation will solve the inference problem ef-
ficiently and it will give a globally optimal solution (under
the assumptions). For large problems though, there will be
a combinatorial explosion.

To apply this approach to large scale problems it is nec-
essary to reduce the complexity. We do this by dropping the
dependencies between feature vectors and split nodes that
are more than a certain number of links away. The effect is
that we optimize shorter but overlapping paths in the graph.
A Bayes net for our track graph can look like the Bayes net
in Figure 6. As can be seen, paths to all single target tracks
are taken into account, but the levels of dependencies have
been reduced. In this case the paths to 777 and Tig have
dropped the dependencies to the split nodes T and 7%. In
effect this means that the tracks 737 and T;s will not be
compared with tracks above Tg and 7T%. It also mean that
the complexity have been reduced and for larger problems
this is crucial.

(b)
Figure 6. To reduce the complexity we remove dependencies be-
tween tracks that are distant in time. The result is that the al-
gorithm optimizes shorter local paths that are overlapping. The
Bayesian network (a) now has paths to all single track nodes with
ancestors and A;7 and Ais does not depend on Sg and S7 any-
more. (b) shows the resulting junction tree.

2.4.2 Building the Bayes Net
The Bayes net is built through the following procedure.

1. For each split node 7; in the track graph, add the state vari-
able S;.

2. For each single track node 7; with ancestors:



(a) Add an observed node representing all paths leading to
As.
(b) In abreadth-first fashion collect split nodes that are an-

cestors to 75 until the product of the split nodes’ state
sizes (the clique size) have reached a set limit.

(c) Connect the collected split nodes’ state variables to the
new observed node.

2.4.3 Computing the Conditional Probability Tables

For the inference algorithm we need to provide the proba-
bility distributions for each clique in the junction tree. The
probability distribution is the product of the prior and the
likelihood. In this paper we use a flat prior.

The conditional probability tables are computed as de-
scribed below.

1. For each observed node in the BN representing paths leading
to A;:

(a) Get the parents Spq

(b) For each combined state s,, of the variables in Sp,
(the number of combined states is the product of the
size of each state variable S € Spq):

i. Compute the likelihood
P(path(Ai, spa)|Spa = Spa)

Basically, at this step we go through all paths in the local
graph around the split nodes associated with parents, S,
of the observed node. In our example with the Bayes net
in Figure 6, when computing the likelihoods of for paths
leading to 777 we go through all possible paths from 771,
Tg and T15 to T17.

2.4.4 Computing the Likelihoods

The likelihoods in this case are the probability density for
the measurements given that they all are from the same
model. This model is considered unknown, but if there is
a set of models, M, that will make the measurements in-
dependent we can compute the likelihood in the following
way.

P(path(A;, spa)|Spa = Spa)

- / P(path(As, $p)[Spa = Spas M)P(M)
MeM

_ / II Pa;pm)P(r)
Mem Ajepath(A;,Spa)

€))

Sometimes it is easier to find a pairwise measure how
likely two tracks contain the same target. These can be used
in such a way that all pairwise similarity measure are used

exactly once.
P(path(Asi, spa)|Spa = Spa)

< I

Aj€epath(A;,spa)\Ai

P(4;,45) (10

Since we have overlapping paths, the similarity measure be-
tween the other members in the path will be used in the
cliques for paths originating from the those members.

3. Football Tracking

At this stage we focus on applying our method to the
problem of tracking football players in a competitive pro-
fessional game. Football occurs in a structured closed envi-
ronment where it is relatively easy to perform reliable effec-
tive image processing, but on the other hand provides many
complicated and challenging motions and interactions be-
tween players. It is a happy compromise between analyzing
generic video sequences and those engineered in the lab.

Here we review an approach to constructing the track
graph and to defining a measure of similarity between single
player tracks. This takes us to the assumed starting point of
our Bayesian inference problem.

Figure 7. Multi-camera system used to capture a stationary, high-
resolution video covering a large area.

3.1. Extracting the Track Graph

Figure 7 displays the multi-camera system used to pro-
vide a high resolution, wide-field of view video of the foot-
ball game. The resulting video allows all the players to be
seen at all times. As the cameras are stationary it is possi-
ble to perform reliable and accurate background subtraction
to highlight the positions of the targets in each image (see
figure 8 (a)). Temporal analysis of the foreground regions
found at each frame, matching the regions in one frame to
those in the next (figure 8 (b)), allows the identification of
the single and multiple player tracks and the interactions
between them. There are two teams wearing two distinctly
colored uniforms, as well as the officials. It is possible to as-
sign each single track to one of these three categories based
on simple matching of exemplar rgb histograms. Figure 12
displays a portion of the track graph obtained from exam-
ining our football clip in this manner. For the interested



(a) foreground regions

(b) matched regions
Figure 8. (a) The foreground regions found by background sub-
traction. (b) An example of matching the found regions between
one frame and the next. Note that one of the examples is a split,
marking the end of one track and the beginning of two more.

reader, the complete graph is included as part of the supple-
mentary material. We manually obtained the ground truth
for the identity of the team A single target tracks. The tem-
poral extent of each player’s single tracks are displayed in
figure 9. We would like to obtain this figure automatically.

A player
sker2 | —-————94 .. BB B_
Strer1 | —| |- — - — —— -
Right Midfield - - .
Right Cenfre Md | —ee———————s 24— —— e
Left CentreMd | —tH———— ——@——— - B B —

Left Midfield
Right Back

Right Centre Half
Left Centre Half

‘comer te
i

Left Back - . — —

Figure 9. The temporal extent of the team A single player tracks
for the ten minute clip examined. Each line corresponds to a single
player track. The shaded areas display when the major congestion
events occur.

3.2. Similarity Measure Between Player Tracks

We now define a measure of similarity between every
pair of single player tracks from the same team. In foot-
ball a player’s identity is frequently revealed by his position
relative to his teammates. Most obviously the goal-keeper
is always behind all his teammates. We exploit this simple
idea. For each single player track we build a histogram sum-
marizing the player’s position relative to his teammates for
the duration of the track. Each bin of the histogram corre-
sponds to a particular configuration of teammates to the left,
right, behind and in front of the player. There a fixed num-
ber of such configurations as there are eleven players on a
team, see [1] for details. Let I;j denote the similarity score
between two tracks based on comparing their relative spatial
position histograms. This measure is particularly effective
for matching tracks of long duration. Such tracks, generally,
occur when the team is in typical formations and the players
are in set positions within these formations. However, many
of the shorter tracks occur when the team is in transition be-
tween typical team formations rendering the relative spatial
position information less effective. To compensate for this
deficiency we define temporally local measures.

Two tracks T; and T} are temporally close if the end of

T; occurs before and within ¢ frames of the start of 7). If ¢
is small enough and T; and T; represent the same player, it
is reasonable to assume continuity of appearance and mo-
tion. On this basis we construct appearance and motion
based measures between temporally close track pairs. The
appearance measure relies on cross-correlating the appro-
priate spatio-temporal volumes at the ends involved. This
measure is denoted by Ii”. The velocity of the targets at the
ends of these tracks is also estimated. Given these velocities
and the final position of T}, an estimate of the start position
of T} is obtained. The difference between this estimate and

actual value is then used as our motion measure - [%. After

appropriate rescaling of the different I’s a combined simi-
larity matrix is produced:

i _ { (1— 20)I7 + aliij + a[éj if T3, T; temporally close.
Iy otherwise
an
with 0 < o < 1, see figure 10. The similarity scores
are then converted into the appropriate form, (eqn 10), by

setting P(A;, Aj) = exp(—AI"), with A > 0.

Figure 10. The pairwise similarity scores for the team A tracks.
Black indicates high similarity and white low similarity. The rows
of the matrix have been re-ordered to group tracks of the same
identity together and to reveal the structure within the matrix. The
red lines denote the sub-blocks of constant identity.

3.3. Results

We are now almost ready to present the identity linking
results. Before running the inference procedure, the num-
ber of targets in each link is computed. In many parts of
our football clip graph, it is not possible to determine the
number of targets in each link and sometimes there are in-
consistencies (the number of input and output targets at an
interaction are unequal). Presently our theory cannot han-
dle such situations, thus these parts of the graph are left
unsolved. Accordingly, the Bayes net is divided into parts,
which are analyzed separately. For our football graph 14
separate parts are isolated. In figure 12(b) we can see an ex-
plicit demonstration of solutions found for some split nodes.



For a clearer picture of the quality of the results obtained
the found paths (for team A players) within largest parts are
shown in figure 11. As can be seen, the majority of the
tracks are correctly linked.

A path

e
© o R N®
'1

corner
goal

P NWDNOON®

frame

+—ua
| | | | | | | |

0 1000 2000 3000 4000 5000 6000 7000

A path
11 A e—k
10 »n—>
9 [
8 A A
7 +
6 -5 @
s c
451 etk ‘_*_8_‘ 8
3 +—¥z= -
2
1 PRGN frame

10000 11000 12000 13000 14000 15000

A path
4 —_——k
3
2 e Jok———kiok
1 ek
frame
| | | |
8000 9000 10000 11000

Figure 11. Estimated paths for the three largest consistent parts
of the graph. Each line represents a single player track and row
an estimated path. The color and symbol denote the true identity
of the track. Ideally there should only be one color and symbol per
row. On several occasions a target’s trajectory is split into several
paths. This is caused by links in a part having an undetermined
number of targets. The rest of the parts contain a similar number
of tracks and quality of results to the bottom graph.

To summarize the overall results - 85% (out of 73) of the
connections considered are correctly resolved. However,
not all decisions made at each split node have the same de-
gree of confidence associated with them. Fortunately, as we

are working with probabilities and within a Bayesian frame-
work we can compute the absolute probability for each pos-
sible resolution of a particular split node. Comparing the
relative value of the most probable to the next most proba-
ble resolution provides a confidence level of our estimate.
By only including estimates that are certain, we can elim-
inate some of the connection errors. Figure 13 shows the
percentage of correct connections as we remove the less cer-
tain split estimates. When 25% of the connections remain
we have 100% correct connections.

A

N

80 |-
% correct links

60 |—
—— % links above threshold

40 |—

Threshold
>

1 12 14 16

Figure 13. The percentage of correct connections. Using the
marginal probabilities we can remove uncertain estimates. We
threshold on the ratio between the most and second most proba-
ble state of a split node. This increases the percentage of correct
links, but reduces the number of connections made. At a thresh-
old of 1.6 we make no wrong connections, but only 25% of the
connections are left (out of 73).

4. Conclusions and Future Research

When tracking multiple targets over a long period, it is
inevitable that inter-target occlusions will occur where it is
not possible to immediately link the identities of the tar-
gets entering and those exiting the interaction. It is there-
fore necessary to compare targets over extended periods of
time in the attempt to link their identities. In this paper
we achieve this by considering a two-stage solution. The
first stage involves the construction of a track graph de-
scribing the interactions between targets. The second stage,
the focus of this paper, exploits the track graph and sim-
ilarity measurements between the tracks to infer the most
likely configuration of paths for all targets. This is achieved
by parameterizing the solution space imposed by the track
graph and inferring the parameters given the measurements.
To make large scale problems computationally feasible we
only consider tracks within a certain window of interactions
to be explicitly dependent.

Promising results on a challenging (and relatively
lengthy) data set are presented. The main limitation to im-
proving the results, presently, are the assumptions concern-
ing the track graph. For problems with many targets inter-
acting frequently it is not realistic to expect that the number
of targets in each node can be counted explicitly. Relaxing



T

154

o 140, P9

147

139 133, P11
\144
4
[ > 148, Pl1 99
/ 9
145 146, P9
150
e 134
156 155, P9 153, P11 158, P10
)ﬁg
\]L_,E\
160,P9 —py
d
165, P9
\

(a) football track graph

(b) resolved track graph

Figure 12. (a) This is a small part of the football clip track graph. The node colors correspond to team A (light blue oval), team B (white),
referees (dark grey) and multi-target nodes (black). (b) The corresponding resolved track graph. The square nodes display how the split
nodes have been resolved. Ground truth player numbers can be seen for the team A players.

this assumption, with more sophisticated modeling, would
increase the size of the parts of real-world track graphs we
could examine. Of course, as in most tracking algorithms,
there is room for improvement in the modeling of the ap-
pearance of the targets.

In a complementary approach, the identities of single
player tracks can be linked by un-supervised clustering us-
ing the similarity matrices shown in figure 10. Clustering
can be performed without reference to the track graph, thus
by-passing the computational bottlenecks and inconsisten-
cies in the graph. Reliable results have been obtained when
long tracks are included in the clustering process [1]. A
fruitful avenue of future research would be to investigate
how to optimally combine clustering and the path finding
algorithm presented here to obtain a more complete label-
ing of the player identities.

References

[1] Author. Tracking and Labelling of Interacting Multiple Tar-
gets. ECCV06 submission ID 1027. Supplied as additional
material eccv06.pdf. 2, 5, 6, 8

[2] R. Cowell, A. Dawid, S. Lauritzen, and D. Spiegelhalter.
Probabilistic Networks and Expert Syst. Springer, 1999. 4

[3] P. Figueroa, N. Leite, R. Barros, I. Cohen, and G. Medioni.
Tracking soccer players using the graph representation. In
ICPR, pages 787-790, 2004. 1

(4]

(5]

(6]

(7]

8]

(9]

(10]

(1]

(12]

M. Gelgon, P. Bouthemy, and J. Le Cadre. Recovery of
the trajectories of multiple moving objects in an image se-
quence with a pmht approach. J. Image & Vision Computing,
23(1):19-31, 2005. 1

C. Huang and A. Darwiche. Inference in belief networks:
A procedural guide. International Journal of Approximate
Reasoning, 15(3):225-263, 1996. 4

S. Iwase and H. Saito. Parallel tracking of all soccer players
by integrating detected positions in multiple view images. In
ICPR, pages 751-754, 2004. 1

Z. Khan, T. Balch, and F. Dellaert. An mcmc-based particle
filter for tracking multiple interacting targets. In European
Conference on Computer Vision, 2004. 1

K. Murphy. The bayes net toolbox for matlab. In Computing
Science and Statistics, volume 33, 2001. 4

C. Needham and R. Boyle. Tracking multiple sports players
through occlusion, congestion and scale. In BMVC, 2001. 1
K. Okuma, A. Taleghani, N. De Freitas, J. J. Little, and D. G.
Lowe. A boosted particle filter: Multitarget detection and
tracking. In ECCV, 2004. 1

J. Vermaak, A. Doucet, and P. Perez. Maintaining multi-
modality through mixture tracking. In International Confer-
ence on Computer Vision, 2003. 1

M. Xu, J. Orwell, and G. Jones. Tracking football players
with multiple cameras. In IEEE International Conference on
Image Processing, 2004. 1



