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Abstract— People in densely populated environments typi-
cally form groups that split and merge. In this paper we
track groups of people so as to reflect this formation pro-
cess and gain efficiency in situations where maintaining the
state of individual people would be intractable. We pose the
group tracking problem as a recursive multi-hypothesis model
selection problem in which we hypothesize over both, the
partitioning of tracks into groups (models) and the association
of observations to tracks (assignments). Model hypotheses that
include split, merge, and continuation events are first generated
in a data-driven manner and then validated by means of the
assignment probabilities conditioned on the respective model.
Observations are found by clustering points from a laser range
finder given a background model and associated to existing
group tracks using the minimum average Hausdorff distance.
We further propose a method to estimate the number of
people in groups based on the number of human-sized clusters.
Experiments with a stationary and a moving platform show
that, in populated environments, tracking groups is clearly more
efficient than tracking people separately. The results also show
a high accuracy in the estimation of group sizes. Our system
runs in real-time on a typical desktop computer.

I. INTRODUCTION

The ability of robots to keep track of people in their
surrounding is fundamental for a wide range of applications
including personal and service robots, intelligent cars, or
surveillance. People are social beings and as such they form
groups, interact with each other, merge to larger groups
or separate from groups. Tracking individual people during
these formation processes can be hard due to the high
chance of occlusion and the large extent of data association
ambiguity. This causes the space of possible associations
to become huge and the number of assignment histories to
quickly become intractable. Further, for many applications,
knowledge about groups can be sufficient as the task does
not require to know the state of every person. In such
situations, tracking groups that consist of multiple people is
more efficient and furthermore contains semantic information
about activities of the people.

This paper focuses on group tracking in populated envi-
ronments with the goal to track a large number of people
in real-time. The approach attempts to maintain the state of
groups of people over time, considering possible splits and
merges as illustrated in Fig. 1. For our experiments we use
a mobile robot equipped with a laser range finder, but our
method should be applicable to data from other sensors as
well.
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Fig. 1. Tracking groups of people with a mobile robot. Groups are shown
by their position (blue), velocity (black), the associated laser points (green)
and a contour for visualization. In the two frames, a group of four people
splits up into two groups with two people each.

In most related work on laser-based people tracking, tracks
correspond to individual people [1], [2], [3], [4], [5]. In
Taylor et al. [6] and Arras et al. [7], tracks represent the state
of legs which are fused to people tracks in a later stage. Khan
et al. [8] proposed an MCMC-based tracker that is able to
deal with non-unique assignments, i.e., measurements that
originate from multiple tracks, and multiple measurements
that originate from the same track. Actual tracking of groups
using laser range data was, to our knowledge, first addressed
by Mucientes et al. [9]. Most research in group tracking was
carried out in the vision community [10], [11], [12]. Gennari
et al. [11] and Bose et al. [12] both address the problem
of target fragmentation (splits) and grouping (merges). They
do not integrate data association decisions over time –
a key property of the Multi-Hypothesis Tracking (MHT)
approach, initially presented by Reid [13] and later extended
by Cox et al. [14]. The approach belongs to the most general
data association techniques as it produces joint compatible
assignments, integrates them over time, and is able to deal
with track creation, confirmation, occlusion, and deletion.

The works closest to this paper are Mucientes et al. [9]
and Joo et al. [15]. Both address the problem of group
tracking using an MHT approach. Mucientes et al. employ
two separate MHTs, one for the regular association problem
between observations and tracks and a second stage MHT
that hypothesizes over group merges. However, people tracks
are not replaced by group tracks, hence there is no gain
in efficiency. The main benefit of that approach is the
semantical extra information about formation of groups.

Joo et al. [15] present a visual group tracker using a
single MHT to create hypotheses of group splits and merges
and observation-to-track assignments. They develop an in-
teresting variant of Murty’s algorithm [16] that generates
the k-best non-unique assignments which enables them to
make multiple assignments between observations and tracks,
thereby describing target splits and merges. However, the
method only produces an approximation of the optimal k-



best solutions since the posterior hypothesis probabilities
depend on the number of splits, which, at the time when the
k-best assignments are being generated, is unknown. In our
approach, the split, merge and continuation events are given
by the model before computing the assignment probabilities,
and therefore, our k-best solutions are optimal.

In this paper we propose a tracking system for groups of
people using an extended Multi-Hypothesis Tracking (MHT)
approach to hypothesize over both, the group formation
process (models) and the association of observations to
tracks (assignments). Each model, defined to be a particular
partitioning of tracks into groups, creates a new tree branch
with its own assignment problem. As a further contribution
we propose a group representation that includes the shape of
the group and we show how this representation is updated
in each step of the tracking cycle. This extends previous
approaches where groups are assumed to have Gaussian
shapes only [11], [9]. We also present an estimation method
to determine the number of people in groups which extends
the approach presented by the same authors in [17]. Finally,
we use the psychologically motivated proxemics theory in-
troduced by Hall [18] for the definition of a group. The
theory relates social relation and body spacing during social
interaction.

It is structured as follows: the following section describes
the extraction of groups of people from laser range data.
Section III introduces the definition of groups. Section V
briefly describes the cycle of our Kalman filter-based tracker.
Section VI explains the data-driven generation of models and
how their probabilities are computed. Whereas Section VII
presents the multi-model MHT formulation and derives
expressions for the hypothesis probabilities, Section VIII
describes the experimental results.

II. GROUP DETECTION IN RANGE DATA

Detecting people in range data has been approached with
motion and shape features [1], [2], [3], [4], [5], [9] as
well as with a learned classifier using boosted features
[19]. However, these recognition systems were designed (or
trained) to extract single people. In the case of densely
populated environments, groups of people typically produce
large blobs in which individuals are hard to recognize. We
therefore pursue the approach of background subtraction
and clustering. Given a previously learned model (a map
of the environment for mobile platforms), the background
is subtracted from the scans and the remaining points are
passed to the clustering algorithm. This approach is also able
to detect standing people as opposed to [9] which relies on
motion features.

Concretely, a laser scanner generates measurements zi =
(φi, ρi)

T , i ∈ {1, . . . Nz}, with φi being the bearing and
ρi the range value. The measurements zi are transformed
into Cartesian coordinates and grouped using single linkage
clustering [20] with a distance threshold dP . The outcome
is a set of clusters Zi making up the current observation
Z(k) = {Zi | i = 1, . . . , NZ}. Each cluster Zi is a complete
set of measurements zi that fulfills the cluster condition,

i.e., two clusters are joined if the distance between their
closest points is smaller than dP . A similar concept, using
a connected components formulation, has been used by
Gennari and Hager [11]. The clusters then contain range
readings that can correspond to single legs, individual people,
or groups of people, depending on the cluster distance dP .

III. GROUP DEFINITION

This section defines the concept of a group and derives
probabilities of group-to-observation and group-to-group as-
signments.

What makes a collection of people a group is a highly
complex question in general which involves difficult-to-
measure social relations among subjects. A concept related
to this question is the proxemics theory introduced by Hall
[18] who found from a series of psychological experiments
that social relations among people are reliably correlated with
physical distance during interaction. This finding allows us to
infer group affiliations by means of body spacing information
available in the range data. The distance dP thereby becomes
a threshold with a meaning in the context of group formation.

A. Representation of Groups

Concretely, we represent a group as a tuple G = 〈x, C,P〉
with x as the track state, C the state covariance matrix and
P the set of contour points that belong to G. The track state
is composed of the position (x, y) and the velocities (ẋ, ẏ)
to form the state vector x = (x, y, ẋ, ẏ)T of the group.

The points xPi
∈ P are an approximation of the group’s

current shape or spatial extension. Shape information will be
used for data association under the assumption of instanta-
neous rigidity. That is, a group is assumed to be a rigid object
over the duration of a time step ∆t, and consequently, all
points in P move coherently with the estimated group state
x. The points xPi are represented relative to the state x.

B. Group-to-Observation Assignment Probability

For data association we need to calculate the probability
that an observed cluster Zi belongs to a predicted group
Gj = 〈xj(k+1|k), Cj(k+1|k), Pj 〉. A distance function
d(Zi, Gj) is sought that, unlike the Mahalanobis distance
used by Mucientes et al. [9], accounts for the shape of the
observation cluster Zi and the group’s contour Pj , rather
than just for their centroids. To this end, we use a variant of
the Hausdorff distance. As the regular Hausdorff distance is
the longest distance between points on two contours, it tends
to be sensitive to large variations in depth that can occur in
range data. This motivates the use of the minimum average
Hausdorff distance [21] that computes the minimum of the
averaged distances between contour points,

dHD(Zi, Gj) = min {d(Zi,Pj), d(Pj ,Zi)} (1)

where d(Zi,Pj) is the directed average Hausdorff distance.
Since we deal with uncertain entities, d(Zi,Pj) is calculated
using the squared Mahalanobis distance d2 = νT S−1 ν,

d(Zi,Pj) =
1
|Zi|

∑
zi∈Zi

min
xPj
∈Pj

{
d2(νij , Sij)

}
, (2)



with νij , Sij being the innovation and innovation covariance
between a point zi ∈ Zi and contour point xPj

of the
predicted set Pj transformed into the sensor frame,

νij = zi − (Hxj(k + 1|k) + xPj
) (3)

Sij = H Cj(k + 1|k)HT +Ri (4)

where H = ( 1 0 0 0
0 1 0 0 ) is the measurement Jacobian and Rj

the 2 × 2 observation covariance whose entries reflect the
noise in the measurement process of the range finder.

The probability that cluster Zi originates from Gj is finally

Ni := N (d2
HD(Zi, Gj), Sij) (5)

where N (µ,Σ) denotes the normal distribution.

C. Group-to-Group Assignment Probability

To determine the probability that two groups Gi and
Gj merge, we compute the distance between their closest
contour points in a Mahalanobis sense. In doing so, we have
to account for the clustering distance dP that states identity
of Gi, Gj as soon as their contours come closer than dP . Let
∆xPij

= xPi
−xPj

be the vector difference of two contour
points of Gi and Gj respectively, we then subtract dP from
∆xPij unless ∆xPij ≤dP for which ∆xPij =0. Concretely,
the modified difference becomes ∆x′Pij

= max(0, ∆xPij−
dP uPij ) where uPij = ∆xPij/|∆xPij |.

In order to obtain a similarity measure that accounts
for nearness of group contours and similar velocity, we
augment ∆x′Pij

by the difference in the velocity components,
∆x∗Pij

= (∆x′TPij
, ẋi − ẋj , ẏi − ẏj)T . Statistical compati-

bility of two groups Gi and Gj can now be determined with
the (four-dimensional) minimum Mahalanobis distance

d2
min(Gi, Gj) = min

xPi
∈Pi, xPj

∈Pj

{
d2(∆x∗Pij

, Ci+Cj)
}
.

The probability that two groups actually belong together, is
finally given by Nij := N

(
d2

min(Gi, Gj), Ci+Cj
)
.

IV. ESTIMATING THE NUMBER OF PEOPLE IN GROUPS

As described above, our group tracking approach con-
siders the joint state of groups rather than the states of
the individuals that form the groups. However, knowing
the number of people in a group is interesting information,
e.g., for interaction, data association or motion planning. We
therefore augment the state vector of group tracks by a fifth
state variable, ns, the group size. A group state is then the
vector x = (x, y, ẋ, ẏ, ns)T .

As an observation of the group size, we take the number
of human-sized clusters in the set of contour points P of a
group track G. Reapplying single-linkage clustering with a
cluster distance of dP = 0.3m yields groups of points that
are likely to correspond to human individuals.

For state prediction and in case of a track confirmation
event, we assume, analogous to the constant velocity motion
model, constant group size. Noise in the motion model
accounts for people joining or leaving the group without
being noticed. If two tracks are merged, the resulting size
estimate is the sum of the sizes of the joining groups. The
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Fig. 2. Flow diagram of the tracking system. See explanations in section V.

variances simply sum up, as we assume independent size
estimates across groups. If two tracks are split, we split the
group size in half and increase the variance to account for
uneven splits.

V. TRACKING CYCLE

This section describes the steps in the cycle of our Kalman
filter-based group tracker. An overview is given by the flow
diagram in Fig. 2. The structure differs from a regular tracker
in the additional steps model generation, track reprediction
and reclustering.

• State prediction: The state prediction of a group track
based on the previous posterior estimates x(k|k), C(k|k)
is given by x(k + 1|k) = A x(k|k) and C(k + 1|k) =
A C(k|k) AT +Q, where A is the state transition matrix
for a constant velocity motion model and Q the 4 × 4
process noise covariance matrix whose entries reflect the
acceleration capabilities of a typical human. The set of
contour points P is now relative to x(k + 1|k).

• Observation: As described in section II, this step involves
grouping the laser range data into clusters Z .

• Model Generation: Models are generated based on the
predicted group tracks and the clusters Z , see section VI.

• Reprediction: Based on the model hypotheses that pos-
tulate a split, merge or continuation event for each track,
groups are repredicted so as to reflect the respective model:

If a model hypothesis contains a split of a group, two
new groups are created by duplicating its predicted state.
The same applies for the set P .

If a model hypothesis contains a merge of two groups
Gi, Gj , the repredicted group state xij , Cij is computed
as the multivariate weighted average (omitting (k+ 1|k)),

C−1
ij = C−1

i + C−1
j

xij = Cij (C−1
i xi + C−1

j xj) . (6)

The set of contour points of the merged group is the union
of the two former point sets, Pij = Pi ∪ Pj .



• Reclustering: Reclustering an observed cluster Zi is
necessary when it has been produced by more than one
group track, that is, it is in the gate of more than one
track. If the model hypothesis postulates a merge for the
involved tracks, nothing needs to be done. Otherwise, Zi
needs to be reclustered, which is done using a nearest-
neighbor rule: those points zi ∈ Zi that share the same
nearest neighbor track are combined in a new cluster. This
step follows from the uniqueness assumption – common in
target tracking – which says that a target can only produce
a single observation.

• Data Association MHT: This step involves the generation,
probability calculation, and pruning of data association hy-
potheses that assign repredicted group tracks to reclustered
observations. See section VII.

• Update: A group track Gj that has been assigned to a
cluster Zi is updated with a standard linear Kalman filter
using the centroid position z̄Zi

of Zi. The contour points
in Pj are replaced by the points in Zi, transformed into
the reference frame of the posterior state x(k + 1|k + 1).
Thereby, Pj contains always the group’s most actual shape
approximation.

VI. MODEL GENERATION AND MODEL PROBABILITY

A model is defined to be a partitioning of tracks into
groups. It assumes a particular state of the group formation
process. New models, whose generation is described in this
section, hypothesize about the evolution of that state.

The space of possible model transitions is large since
each group track can split into an unknown number of new
tracks, or merge with an unknown number of other tracks.
We therefore bound the possible number of model transitions
by the assumption that merge and split are binary operators.
We further impose the gating condition for observations
and tracks using the minimum average Hausdorff distance,
thereby implementing a data-driven aspect into the model
generation step. Concretely, we assume:
• A track Gi can split at most into two tracks in one frame

provided two compatible observations with Gi.
• At most two group tracks Gi, Gj can merge into one

track at the same time but only if there is an observation
which is statistically compatible with Gi and Gj .

• A group track can only split into tracks that are both
matched in that very time step. Splits into occluded or
obsolete tracks are not allowed.

• A group track can not be involved in a split and a merge
action at the same time.

Gating and statistical compatibility are both determined on
a significance level α. The limitation to binary operators is
justified by the realistic assumption that we observe the world
much faster than the rate with which it evolves. Even if, for
instance, a group splits into three subgroups at once, the
tracker requires only two cycles to reflect this change.

A new model now defines for each group track if it is
continued, split or if it merges with another group track.
The probability of a model is calculated using constant

Fig. 3. The multi-model MHT. For each parent hypothesis, model
hypotheses (ellipses) branch out and create their own assignment problems.
In our application, models define which tracks of the parent hypothesis are
continued, split or merge. The tree shows frames 13 to 15 of figure 4. The
split of group 1 between frames 14 and 15 is the most probable hypothesis
following model branch 0. See the legend for details.

prior probabilities for continuations and splits, pC and pS
respectively, and the probability for a merge between two
tracks Gi and Gj as pG · Nij . The latter term consists
of a constant prior probability pG and the group-to-group
assignment probability Nij defined in section III-C. Let NC
and NS be the number of continued tracks and the number
of split tracks in model M respectively, then the probability
of M conditioned on the parent hypothesis Ωk−1 is

P (M |Ωk−1) = pNC

C · pNS

S

∏
Gi,Gj∈Ωk−1

( pG · Nij)δij (7)

with δij being 1 if Gi, Gj merge and 0 otherwise.

VII. MULTI-MODEL MHT

In this section we describe our extension of the original
MHT by Reid [13] to a multi-model tracking approach that
hypothesizes over both, data associations and models.

Let Ωki be the i-th hypothesis at time k and Ωk−1
p(i) its

parent. Let further ψi(k) denote a set of assignments which
associates predicted tracks in Ωk−1

p(i) to observations in Z(k).
As there are many possible assignment sets given Ωk−1

p(i) and
Z(k), there are many children that can branch off a parent
hypothesis, each with a different ψ(k). This makes up an
exponentially growing hypothesis tree.

The multi-model MHT introduces an intermediate tree
level for each time step, on which models spring off from
parent hypotheses (Fig. 3). In each model branch, the tracks
of the parent hypothesis are first repredicted to implement
that particular model and then assigned to the (reclus-
tered) observations. Possible assignments for observations
are matches with existing tracks, false alarms or new tracks.
Using the generalized formulation of Arras et al. [7] to deal
with more than two track interpretation labels, tracks are
interpreted as matched, obsolete or occluded.

A. Probability Calculations

The probability of a hypothesis in the multi-model MHT is
calculated as follows. According to the Markov assumption,
the probability of a child hypothesis Ωki given the obser-
vations from all time steps up to k, denoted by Zk, is the
joint probability of the assignment set ψi(k), the model M



and the parent hypothesis Ωk−1
p(i) , conditioned on the current

observation Z(k). Using Bayes rule, this can be expressed as
the product of the data likelihood with the joint probability
of assignment set, model and parent hypothesis,

P (Ωki |Zk) = P (ψ,M,Ωk−1
p(i) |Z(k)) (8)

= η · P (Z(k)|ψ,M,Ωk−1
p(i) ) · P (ψ,M,Ωk−1

p(i) ).

By using conditional probabilities, the third term on the
right hand side can be factorized into the probabilities of
the assignment set, the model and the parent hypothesis,

P (ψ,M,Ωk−1
p(i) ) = P (ψ|M,Ωk−1

p(i) ) · P (M |Ωk−1
p(i) ) · P (Ωk−1

p(i) ).

The last term is known from the previous iteration while the
second term was derived in section VI.

The first term is the probability of the assignment set ψ.
The set ψ contains the assignments of observed clusters
Zi and group tracks Gj either to each other or to one of
their possible labels listed above. Assuming independence
between observations and tracks, the probability of the
assignment set is the product of the individual assignment
probabilities. They are: pM for matched tracks, pF for false
alarms, pN for new tracks, pO for tracks found to be occluded
and pT for obsolete tracks scheduled for termination. If the
number of new tracks and false alarms follow a Poisson
distribution (as assumed by Reid [13]), the probabilities pF
and pN have a sound physical interpretation as pF = λFV
and pN = λNV where λF and λN are the average rates of
events per volume multiplied by the observation volume V
(the sensor’s field of view). The probability for an assignment
ψ, given a model M and a parent hypothesis Ωk−1 is then
computed by

P (ψ|M,Ωk−1) = pNM

M pNO

O pNT

T λNF

F λNN

N V NF +NN , (9)

where the Ns are the number of assignments in ψ to the
respective labels.

Thanks to the independence assumption, also the data
likelihood P (Z(k)|ψ,M,Ωk−1

p(i) ) is computed by the product
of the individual likelihoods of each observation cluster Zi in
Z(k). If ψ assigns an observation Zi to an existing track, we
assume the likelihood of Zi to follow a normal distribution,
given by Eq. 5. Observations that are interpreted as false
alarms and new tracks are assumed to be uniformly dis-
tributed over the observation volume V , yielding a likelihood
of 1/V . The data likelihood then becomes

P (Z(k)|ψ,M,Ωk−1) =
(

1
V

)NN +NF

NZ∏
i=1

N δi
i , (10)

where δi is 1 if Zi has been assigned to an existing track,
and 0 otherwise.

Substitution of Eqs. (7), (9), and (10) into Eq. (8) leads,
like in the original MHT approach, to a compact expression,
independent on the observation volume V .

Finally, normalization is performed yielding a true prob-
ability distribution over the child hypotheses of the current
time step. This distribution is used to determine the current
best hypothesis and to guide the pruning strategies.

TABLE I
SUMMARY OF THE DATA USED IN THE TWO EXPERIMENTS.

Experiment 1 Experiment 2
Number of frames 578 991
Avg. / max people 6.25 / 13 8.99 / 20
Avg. / max groups 2.60 / 4 4.16 / 8
Number of splits / merges 5 / 10 48 / 44
Number of new tracks / deletions 19 / 15 34 / 39

B. Pruning

Pruning is essential in implementations of the MHT
algorithm, as otherwise the number of hypotheses grows
boundless. The following strategies are employed:
K-best branching: instead of creating all children of a

parent hypothesis, the algorithm proposed by Murty [16]
generates only the K most probably hypotheses in poly-
nomial time. We use the multi-parent variant of Murty’s
algorithm, mentioned in [22], that generates the global K
best hypotheses for all parents.

Ratio pruning: a lower limit on the ratio of the current
and the best hypothesis is defined. Unlikely hypotheses with
respect to the best one, being below this threshold, are
deleted. Ratio pruning overrides K-best branching in the
sense that if the lower limit is reached earlier, less than K
hypotheses are generated.
N -scan back: the N-scan-back algorithm considers an

ancestor hypothesis at time k−N and looks ahead in time
onto all children at the current time k (the leaf nodes). It
keeps only the subtree at k−N with the highest sum of leaf
node probabilites, all other branches at k−N are discarded.

VIII. EXPERIMENTS

To analyze the performance of our system, we collected
two data sets in a large entrance hall of a university building.
We used a Pioneer II robot equipped with a SICK laser
scanner mounted at 30 cm above floor, scanning at 10 fps. In
two unscripted experiments (experiment 1 with a stationary
robot, experiment 2 with a moving robot), up to 20 people
are in the sensor’s field of view. They form a large variety of
groups during social interaction, move around, stand together
and jointly enter and leave the hall (see Tab. I).

To obtain ground truth information, we labeled each single
range reading. Beams that belong to a person receive a
person-specific label, other beams are labeled as non-person.
These labels are kept consistent over the entire duration of
the data sets. People that socially interact with each other
(derived by observation) are said to belong into a group with
a group-specific label. Summed over all frames, the ground
truth contains 5629 labeled groups and 12524 labeled people.

The ground truth data is used for performance evaluation
and to learn the parameter probabilities of our tracker. The
values, determined by counting, are pM = 0.79, pO = 0.19,
pT = 0.02, pF = 0.06, pN = 0.02 for the data association
probabilities, and pC = 0.63, pS = 0.16, pG = 0.21
for the group formation probabilities. When evaluating the
performance of the tracker, we separated the data into a
training set and a validation set to avoid overfitting.



Fig. 4. Tracking results from experiment 2. In frame 5, two groups are
present. In frame 15, the tracker has correctly split group 1 into 1-0 and 1-1
(see Fig. 3). Between frames 15 and 29, group 1-0 has split up into groups
1-0-0 and 1-0-1, and split up again. New groups, labeled 2 and 3, enter the
field of view in frames 21 and 42 respectively.

Six frames of the current best hypothesis from experiment
2 are shown in Fig. 4, the corresponding hypothesis tree is
shown in Fig. 3. The sequence exemplifies movement and
formation of several groups.

A. Clustering Error

Given the ground truth information on a per-beam basis we
can compute the clustering error of the tracker. This is done
by counting how often a track’s set of points P contains too
many or wrong points (undersegmentation) and how often P
is missing points (oversegmentation) compared to the ground
truth. Two examples for oversegmentation errors can be seen
in Fig. 4, where group 0 and group 1-0 are temporarily
oversegmented. However, from the history of group splits
and merges stored in the group labels, the correct group

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.5  1  1.5  2  2.5  3  3.5

E
rr

or
 r

at
es

 p
er

 tr
ac

k 
an

d 
fr

am
e

Clustering distance threshold dP (m)

w/o tracking

Overs. + Unders.
Oversegm.

Undersegm.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  4  8  12  16  20

A
vg

. c
yc

le
 ti

m
e 

(s
ec

)

Number of people in ground truth

Group tracker
People tracker

Fig. 5. Left: clustering error of the group tracker compared to a memory-
less single linkage clustering (without tracking). The smallest error is
achieved for a cluster distance of 1.3 m which is very close to the border of
personal and social space according to the proxemics theory, marked at 1.2
m by the vertical line. Right: average cycle time for the group tracker versus
a tracker for individual people plotted against the ground truth number of
people.

relations can be determined in such cases.
For experiment 1, the resulting percentages of incorrectly

clustered tracks for the cases undersegmentation, overseg-
mentation and the sum of both are shown in Fig. 5 (left),
plotted against the clustering distance dP . The figure also
shows the error of a single-linkage clustering of the range
data as described in section II. This implements a memory-
less group clustering approach against which we compare
the clustering performance of our group tracker.

The minimum clustering error of 3.1% is achieved by the
tracker at dP = 1.3m. The minimum error for the memory-
less clustering is 7.0%, more than twice as high. In the
more complex experiment 2, the minimum clustering error
of the tracker rises to 9.6% while the error of the memory-
less clustering reaches 20.2%. The result shows that the
group tracking problem is a recursive clustering problem that
requires integration of information over time. This occurs
when two groups approach each other and pass from opposite
directions. The memory-less approach would merge them
immediately while the tracking approach, accounting for the
velocity information, correctly keeps the groups apart.

In the light of the proxemics theory the result of a minimal
clustering error at 1.3 m is noteworthy. The theory predicts
that when people interact with friends, they maintain a range
of distances between 45 to 120 cm called personal space.
When engaged in interaction with strangers, this distance is
larger. As our data contains students who tend to know each
other well, the result appears consistent with Hall’s findings.

B. Tracking Efficiency

When tracking groups of people rather than individuals,
the assignment problems in the data association stage are
of course smaller. On the other hand, the introduction of
an additional tree level on which different models hypoth-
esize over different group formation processes comes with
additional computational costs. We therefore compare our
system with a person-only tracker which is implemented by
inhibiting all split and merge operations and reducing the
cluster distance dP to the very value that yields the lowest
error for clustering single people given the ground truth. For



experiment 2, the resulting average cycle times versus the
ground truth number of people is shown in Fig. 5 (right).
The plots are averaged over different k from the range of 2
to 200 at a scan-back depth of N = 30.

With an increasing number of people, the cycle time for
the people tracker grows much faster than the cycle time of
the group tracker. Interestingly, even for small numbers of
people the group tracker is faster than the people tracker.
This is due to occasional oversegmentation of people into
individual legs tracks. Also, as mutual occlusion of people
in densely populated environments occurs often, the people
tracker has a lot more occluded tracks to maintain than the
group tracker, as occlusion of entire groups is rare. Also,
the additional complexity of multiple models in the group
tracker virtually disappears when the tracks are isolated due
to the data-driven model generation.

This result clearly shows that the claim of higher efficiency
holds for this group tracking approach. With an average cycle
time of around 100 ms for up to 10 people on a Pentium IV
at 3.2 GHz, the algorithm runs in real-time even with a non-
optimized implementation.

C. Group Size Estimation

To evaluate the accuracy of our group size estimation
approach, we define the error as the absolute difference
between the estimated number of people in a group and the
true value according to the labeled ground truth.

In experiment 1, we find that the average error is
0.23 people with a standard deviation of 0.30. In the more
complex experiment 2, the average error is 0.33 people with
a standard deviation of 0.49. If the estimated group sizes
are rounded to integers, the tracker determined the correct
value in 88.9% of all cases in experiment 1 and in 84.3%
for experiment 2.

If only deviations of more than one person are considered
an error, the system was correct in 99.5% of all cases in
experiment 1 and 97.5% in experiment 2.

IX. CONCLUSION

In this paper, we presented a multi-model hypothesis
tracking approach to track groups of people. We extended the
original MHT approach to incorporate model hypotheses that
describe track interaction events that go beyond what data
association can express. In our application, models encode
the formation of groups during split, merge, and continuation
events. We further introduced a representation of groups that
includes their shape, and employed the minimum average
Hausdorff distance to account for the shape information
when calculating association probabilities.

The proposed tracker has been implemented and tested
using a mobile robot equipped with a laser range finder. It
is able to robustly track groups of people as they undergo
complex formation processes. Given ground truth data with
over 12,000 labeled occurrences of people and groups, the
experiments showed that the tracker could reproduce such
processes with a low clustering error and very accurate
estimates of the number of people in groups.

Further experiments carried out from a stationary and a
moving platform in populated environments with up to 20
people demonstrated that tracking groups of people is clearly
more efficient than tracking individual people. They also
showed that our system performs significantly better than
a memory-less single-frame clustering which underlines the
recursive character of this model selection problem.
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