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Abstract— This work presents our method for people detec- A common problem is how to correctly identify people
tion on the surroundings of a mobile robot by using two layers  features from laser measurements. Aeal [9] using range
of multiple LRFs, allowing to simultaneously detect two set 15 and Zivkovicet al [10] using range data and images,
of different features for every person: chest and legs areas. A . . .
person model is created according to the association of these employ. a Iea.lrmng met.hod, pgrncularl;pxdaBoostmg to .
features and a volume representation allows to estimate the determine which properties and in what amounts to consider
current person position. We present experimental results of to improve detection. However, detection of multiple peopl
multiple people detection in an indoor environment. The main in cluttered environments is difficult especially considgr
problem of our research the development of a mobile robot . sion cases of people walking side by side.
acting as member of a group of people, simple but accurate Most tracking applications can deal with temporal occlu-
people detection and tracking is an important requirement. . )

sions due to obstacles, such as the temporal disappearance
of the legs behind a dust bin. Multiple target tracking in
cluttered environments including crossings tracks is pért

Companion robots are becoming more part of daily lifenost current works [11], [12], [13]. Mucientest al [11]
and are designed to directly interact with people. One Recesxtends the problem of single person tracking by considerin
sary subsystem for such robots is detection, recognitiah aglusters of tracks (people) using Multiple Hypothesis Krac
tracking of people as well as obstacles in the environmening (MHT). Arras et al [12] also uses MHT for tracking

Laser Range Finders (LRF), besides being used for obstaithout a leg swinging-motion model but introducing an
cle detection are also an important part of people trackingcclusion state, low level tracks (legs) are associated to
systems. The Tour-Guide robots Rhino and Minerva by high level track (people). Kondaxaket al[13] present
Burgardet al[1] and Thrunet al2] featured LRFs for people also a multi-target approach using JPDA with a grid map
detection and collision avoidance. LRF present importamhere occupancy counters of each cell decrease with time
advantages over other sensing devices like high accuragy,identify background objects.
wide view angles, high scanning rates, etc., and are begomin One limitation still present in those systems is occlusibn o
more accessible and safer (meaning class 1 lasers) for us#ige tracked body feature for an extended time, for example if
in human environments. the person stopped behind the dust bin. MHT based systems

Most approaches based on LRFs ([3], [4], [5], [6], [7],will delete of the occluded track if it is missing for more
[8]) place the sensors in the same height (single row or scéilman some maximum time. The usage of additional features
plane) to detect and track some feature of the human bodyan overcome this problem, provided that they are separated
Due to laser safety regulations, applications using nossela over some distance (height) where occlusion stops. Instead
1 lasers are mostly limited to a low position, mostly aboubf a single layer system one can consider a multi-layered
knee height or below. Thus legs are widely used as featurasrangement of class-1 LRFs on a mobile platform. Multiple
for human detection and tracking. features have the additional benefit of complementarity for

In Fod et al [3] a row of several LRFs on different detection and tracking: a person can be described by the
positions in a room were used for tracking moving objectgjnion of a set of small swinging segments at low height
future positions are estimated according to a motion moddlegs), a bigger segment at medium height (waist) and a
Montemerloet al [4] also uses LRF from a mobile robot larger segment at a high position (chest). This idea was
for people tracking and simultaneously robot localizatign proposed in our previous work [14]. A multi-layered system
using conditional particle filters. Xaviat al [5] focused on to extract multiple features is of course possible as long as
people detection using a fast method for line/arc detectidhe person height is over some minimum value.
but from a fixed position. Zhaet al [6] proposed a walking A multi-layered system has also being considered pre-
model to improve position prediction by including informa-viously [15], [16]. Gidel et al15] used a 4-layer laser
tion about leg position, velocity and state. The later modedensor for pedestrian detection, scanning planes are not
was then used by Leet al [7] and by Zhacet al [8] but this  parallel so that slight tilting of the vehicle do not affect
time from a mobile robot. detection. However, the vertical distance between feature

on the target pedestrian depend on the distance from the
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I. INTRODUCTION



For every sensor, scan data is mapped into a occupancy grid

Stan data T

map, then target tracking and tracks association is pegdrm g r , el
Tracking in overlapping areas is done by cooperation of g ’ B
respective computers and covariance intersection. T ¥ '.,.
Our approach is then similar to Hashimoto’s[16]: we have  Fusion of Sensors *’, >, -
sensors are arranged in two parallel planes foP38@anning, — = S
separated at different heights from the ground depending on (Iowlayer)l l(top layer)
the features to detect. However, we perform all computing . @)
in a single computer, sensors in the same layer are fused to = Segmentation
combine their individual readings and then layers are also & &
fused for people detection. \ l m
The rest of the paper is organized as follows. In section Feature
Il present an overview of our current system. Section Il Extraction ‘% %

presents our approach for fusion of multiple sensor layers,
including feature extraction, people detection and positi
estimation. Section IV presents experimental results Her t
different fusion steps and for people detection. Finally,
conclusions and future work are left for section V.

Il. SYSTEM OVERVIEW

&
Fig. 1 represen r layered roach, every | r has tw %{/{///4///////// ‘1&
sensgors f?:\F():iﬁ;eo::)spgl;iteaﬁ?r:ctiigz ?c?rc szbZnyni%e(Fig.St ° %/////////////% ©

1(a)), and two layers are used to extract features from upper _ _
and lower parts of a person’s body (Fig. 1(b)). Fig. 2: System overview.

corresponding to people, then a people model is computed
and from it allowing people detection and person position
and direction estimation.

After fusion of sensors in every layer, geometrical feagure
are extracted: large elliptical shapes corresponding &stch
areas and smaller circular shapes for legs. Fusion of é&ttac
features allows creating a cylindrical volume and from & th
estimated person position is computed. A simple yet logical
assumption here is that an elliptical shape corresponding t
(@) (b) a chest is always associated to one or two circular shapes

Fig. 1: Scanning from a double layered approach: (a) Opp(g_orrespondmg to legs (if no occlusions due to clutter are

. ) : onsidered), and that the large elliptical shape (chest) is
?Ig?el;z(lzl\r/]i?avi)e nsors (top view) and (b) two layers of Senso[’:ﬁways overthe set of small circles (legs). Fig. 3 illustrates

this concept, here we present a sequence of continuous scan

images from a person walking (as seen from above), both

The processing pipeline of our system is best understo er laver (large arc-like shape. chest) and lower laver
referring to Fig. 2. Our people detection approach (beforﬁzﬁ)p ver (larg Pe, ) Y

, X , g'small arc-like shapes, legs) are visible.

tracking) involves four steps: fusion of sensors, segment
tion, feature extraction and layer fusion. The outputs fo
some of the steps are depicted as inlets in the figure: Fiy. 2(a \ . “\; ‘) § ‘3
is the result of fusion of sensors (the top layer represented\ Y - ¥
in red and the lower in green), Fig. 2(b) corresponds to ; § ) } ) ; . ; }
geometrical feature extraction (features of people is shpw
and in Fig. 2(c) the detected people around the robot.  Fig. 3: A sequence of walking steps using actual scan data

Our method involves two fusion steps: fusion of sensorgsing sensors from both upper layer (darker points on large
in a single layer and then fusion of layers. In the first stegsurve) and lower layer (smaller curves).
sensors facing opposite directions in the same layer aeslfus
to produce a 360 representation of robot's surroundings. Our main research goal aims to develop a companion
There is overlapping of scan data from both sensors (darkesbot with the objective to study the relationship of an
areas in Fig. 1(a)) so this fusion step must deal witlwutonomous mobile robot and a group of multiple people
data duplication. Then, in the multiple layer fusion stepin a complex environment like public areas, where the robot
raw data from every layer is processed to extract featurésto move and behave as another member of the group, while




achieving navigation with obstacle avoidance. Some of th& Segmentation

basic functions of such companion robot are depicted in Fig. pata clustering can be considered as the problem of break-
4, while the rqbot acts as another group member it has int detection and finding breaking points in scan data can
detect, recognize and track the fellow human members (Fige considered as the problem of finding a threshold function
4(a)) and also move in the environment like the rest of the; o measure separation of adjacent points. Every pair of
members do (Fig. 4(b)). neighboring pointsp; and py are separated by an angle
which is proportional to the sensor’s angular resolutiongt

for points of two adjacent scan steps) and by a distance
e e I 2(pj, k). Points are circularly ordered according to the
= © ‘ © 4 » % scanning step of the sensor. _
® - © e ©.9 A cluster €, whereé = {pi, Pi+1, Pi+2, ", Pm}, IS de-
L I fined according to a cluster membership functian

A (P, Px) = (6—6)) < anD(pj,px) < T (pj. k) (1)

such that for every paifpj,px) of adjacent points, the
Fig. 4. Companion Robot with a group of people: grougEuclidean distanceZ(pj, px) between them is less than a
members recognition (a) and obstacle avoidance (b). given threshold function (pj, pk) for pj, px. A new point
pn is compared to the last known membpy of a given
The robot used for our research is depicted in Fig. 5. Thelusters; as. (pm, pn).
robot (Fig. 5(a)) is based ovamabicarobotic platform [17]. Now, the threshold function is defined for a pair of
Two layers of LRF sensors are used, the lower layer is aboRgints, as in the work of Dietmayer [19], as:
40cmfrom the ground while the upper layer is about ¢20 N Y
Every layer consists of 2 LRF sensors, one facing forwards 7(pi: py) = Co-Camin(ri, ry) )
and another facing backwards for a 8@@verage (Fig. 1 and with C; = /2(1—coga). Dietmayer’s work includes the
5). The sensors used in our system arelftG-04LX laser constantCy to adjust the function to noise and overlapping.
range scanners (Fig. 5(b), [18] provides a good descriptidn our caseCy is reemplaced by the radiyg of the accuracy
of the sensor’s capabilities). area forp; as base point plus a fixed threshold valuec(hth
our case)Z is defined according to thRG-04LX sensor
specifications [18], [20] as:

. [10 if 20mm< r; < 100amm
%(p.)—{ 0.01xr; otherwise ®)

The proposed threshold functiafi uses this accuracy infor-
mationZ when checking for break points, if two neighboring
points have a large range value, it will be most probable that
they form part of the same cluster for their bigger accuracy
areas.

There is also a cluster filtering step that will drop segments
very small to be considered of significance.

(lower layer)

B. Feature Extraction

‘ The idea offeature extractionis to match the sensor
: EB) readings with one or more geometrical models representing
expected behaviour of the data. For example if a LRF sensor
Fig. 5: Our robot system for multiple people detection angjata scanning a wall, then tlexpected behaviousf a wall
tracking (a), fourtURG-04LX are used (b). scan data isa straight line Also if the same sensor is
to scana personthen the expected behaviour is a set of
points formingan arc. So in order to identify walls a first
requirement is to correctly associate the scan data wittesom
Sensors in the same layer are facing opposite directiorstraight line model, for people the same: associate a set of
individual scan data are combined into a 36€presentation. scan points to an arc shape (a circle or an ellipse).
The next step is fusion of both sensor layers, here data will Before applying any fitting method, it is important to
be divided into clusters with a segmentation function anlave some information about the shape of the cluster that
then clusters will be classified according to their geornatri allows selecting the method. The information about clgster
properties. Finally only those segments that match peopig extracted as a set of indicators like number of points,
features will be selected and joined into a 3D model fronstandard deviation, distances from previous and to next
where people position is obtained. clusters, cluster curvature, etc.

IIl. FUSION OF DOUBLE LAYEREDLRF SENSORS



One of the indicators is the clusterdmearity; our ap- human motion, step length, walking speed, etc. are selected
proach here is to classify the clusters inting-and-thin to optimize stability. Their study present data about défe
and those ratheshort-and-thick The rationale behind this is speeds people prefer when walking. If the average values
that, straight line segments tend to be long and thin, rouraf step length are used then it is possible to define the
obstacles, irregular objects, etc., do not have this appear limits of motion of the legs with respect to the projected

Linearity is achieved by computing the covariance matrixhest elliptical area. Figure 6 helps understanding tres.id
> for the clusteré and then its eigenvalueknax and Anin~ The average leg height is about 8¢m, and the height of
that define the scale and its eigenvectarandv, orientation  the lower layer of sensorsis fixed at 4@m s is the step
(major and minor axes) of the dispersion ¥f The ratio length which depends on the speed, for examplenvfr
¢ = Amax/Amin defines the degree of longness/thinness of then average speed of2in/s [22]. d is calculated as:
cluster. We set threshold values for rati® and for Amax. s

The ellipticality factor £ is computed as the standard d=2(H —I)tan(8), where = Sinfl(%)- (5)
deviation o of the residuals of a ellipse fitting processes
using the Fitzgibbon method [21]. The distance between a
cluster point and an ellipse is computed usRgmanujan’s
approximation.

Only clusters with good ellipticality value are selected an
segments passing the linearity criteria (that is lines) loan
easily rejected since they do not belong to people.

We assign a weight valug to every indicatori and
compute an scoring functioB for every segment in in
layer W, whereW € {top,low}, as:

5= 3w 0)) @

7

where#¥ : R — {—1,1} is a binary classifier function for

thei-th indicator which compares whether the given indicator;ig_ 6: Simple representation of human step to compute the

is under some threshold value. Table | presents an examp|Rianced between leg segments while walking.
of indicators and their classifiers, the actual list of irmdars

is similar to that presented by Arraat al in [9]. Weight  According to [22] the step lengths for three different
valuesw; and thresholds for every indicatorwere defined \yalking speeds are presented in Table II. In this table we
after experimental validation. include the parameted from Fig. 6 about the distance
between leg segments when walking at the different speeds.
TABLE I: Example of indicators and their classifiers

Indicator Classifier Meaning TABLE 1I: Step length according to speed and distance
width w w< Wik a leg or a chest has a width no  between leg segments
. . " bigger than the threshold . Mode Speed Step Length  Distance between
linearity ¢ £ <liax leg and chest features are not linear leg segments! ©
curvaturek k> kb leg and chest features are curved
ellipticality & £ < sy the fitting error of ellipse for chest normal 12+0.04m/s 73.0+3cm 34.40cm

under the threshold very slow 05+0.05m/s 47.04+3cm 22.2%cm

very fast 21+0.1m/s 86.0+6cm 39.64cm
C. People Model and Position Detection ab values according to Latt al. [22].

¢ 9
3D projection of two planes of scan data from the Iayeredesnmated from Eq. 5.

sensors can be used to represent the position and diredtion o, . L .
. With an estimation of the maximum value fat, the

a person. The set of geometrical features extracted from the . .

. . séparation of legs at the lower layer height, we can set a
former step are mostly ellipses and circles. If they belong _ n
to a person another important criteria should be meet: tifgarch radius of £¢ at the center of the chest elliptical area
large elliptical segment should come from the upper laygsrojected into the lower layer to search for the correspamdi
and the small circles from the lower layer. No large ellipsekegs for the chest. We use average walking step length from
are possible for a person in the leg area. The smalll circies chatt et al. [22], at normal walking speed, to compute the
not be over the large ellipse (the person height is resttictevalue ford.
according to the height of the upper layer).

To properly establish the previous requirements, it is
necessary to associate segments in the upper layer with thosThe robot used for our research was presented in Fig.
in the lower layer, this is to find the corresponding legs fob, the computer operating the robot is a Intel Pentium
a given chest. Latet al. [22] present a study about how Core Duo based notebook running (Linux kernel 2.6.24) as

IV. EXPERIMENTAL RESULTS



operating system and robot control board is powered by iadicators classify it as person, the boundary length and
Hitachi SH-2 processor. The robot system usé&8RG-04LX segment width were far bigger than the allowed values,
range scanners frofdokuyo Automatic Co., Ltf20], small reducing its scoring and marking it for rejection.

size (5&50x70mm), covers distances up to B6distance
resolution of 1@mand angular resolution of.86°, angular
range of 240 operating at 108z Scan data from each
sensor consists of 682 points circularly ordered according
to scanning step.

Data from each sensor is read every i@y a driver
processes and registered in parallel into a shared memory
system §SM23]) based on IPC messaging and multiple
ring-buffers with automatic timestamping, one driver fes
per sensor. SSM also allows to record raw sensor data into
log files and to play it back with the same rate as the sensor
(10Hz in this case).

Client processes read scan data from the ring-buffers
according to sensor’s pose (those in the top layer and those
on the low layer), pairs of LRF sensors are processed in
the fusion step, sensor layers are further fused and finally
people position is computed. The processing time for the
two layers (4 sensors), from single layer fusion to people
position detection, was below d fast enough given the
sensor’'s scanning speed.

We performed an experiment for people detection and
position estimation from a mobile robot. In the experiment,
5 persons walked around the robot and additional person was
taking the experiment video. Log data from each sensor was
recorded, people position detection tests were perforrfed o
line by playing back this log data using our SSM system. Fig.
7 corresponds to the group of people surrounding the robot.

/ \ /
. — 's
I & *
Y &)Iumn
~

Fig. 7: An experiment for multiple people position estimati
using the proposed method.

©

Fig. 8: Results of LRF data segmentation and feature ex-
traction: raw data ((a)) is segmented ((b)) and then claskifi

((©)).

Fig. 9 shows the results of an experiment for people
detection and position estimation from a mobile robot. k& th
experiment, 5 persons walked around the robot and additiona
person was taking the experiment video (Fig. 9(a)). Log data
from each sensor was recorded, people position detection
tests were performed off-line by playing back this log data
using our SSM system.

A 3D tool was created to visualize inspect how the people

Fig. 8 shows results of LRF data segmentation and featudetection worked; in Fig. 9(b) chest ellipses and leg cacul
extraction: raw data from each layer (top layer in Fig. 8{(®)) ellipses are detected then we place a 3D wooden doll, as

divided into clusters (Fig. 8(b)) and each cluster’s inthcs.

a representation of a person, in the estimated position the

analyzed to extract those segments with human-like featurperson should have. Results were verified by human operator

and average sizes (Fig. 8(c)).

comparing the experiment video with results.

In this figure, arrows in Fig. 8(a) represent the location of The members have varied body sizes, from broad and tall
people in the environment, most of them were successfultp thin and short. Some of the members have a height a
detected in the results of feature extraction (8(c)). Hawev little under the average, as result their chest ellipses wet
one of them has a height below the standard so top-levebrrectly detected in the people detection step. As predent
sensors were actually scanning his neck area, accordiigly In Fig. 9(b), the person to the right of the robot (represgnte
chess ellipse is smaller than the allowed values, thergiae with blue line segments) is missing although circles from
rejected. Another interesting case is the segment marked lags are present.

“column” in Fig. 8(a), although its curvature and linearity Additional snapshots of experimental results are presente



(a) ®

©

Fig. 10: Experimental results with raw scan data ((a) and
Fig. 9: Results of the people detection, (a) snapshot (b) 3{2)) and the corresponding people detection and position
models in estimated positions of people in the experimentestimation ((b) and (d)).

in Fig. 10, the robot is represented in all cases as blue lifbe chest area. The combination of both areas creates a 3D
segments. Fig. 10(a) and 10(c) shows raw scan data froralume which helps locating the position of the person more
both layers (red for the upper layer and green for the loweslosely related to the center of this 3D volume and as a
one), and in Fig. 10(b) and 10(d) a 3D representation gheasure of the possible direction the person is facing. Al-
the human detection and position estimation. In the cas#¥ugh research exists in the area of detection and tracking
of 3D representation, the raw scan data is plotted togethte proposed approach is simple and fast enough to be used
with wooden dolls enclosed in the estimated people positiorior real time detection of people in robot's surroundings.
represented with elliptical shapes, a large one for thetches As future work, multiple people tracking will be con-
area and smaller ones for the extracted leg areas. sidered. Also the effectiveness of our method in cluttered
In Fig. 10(c) there are two rather large arc-like segmentnvironments will be studied. Future steps of our research
in the raw scan image and two large elliptical shapes in thgclude understanding people group motion and recognition
3D representation in Fig. 10(d), in both layers. That is thef group members.
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