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Abstract— This work presents our method for people detec-
tion on the surroundings of a mobile robot by using two layers
of multiple LRFs, allowing to simultaneously detect two set
of different features for every person: chest and legs areas. A
person model is created according to the association of these
features and a volume representation allows to estimate the
current person position. We present experimental results of
multiple people detection in an indoor environment. The main
problem of our research the development of a mobile robot
acting as member of a group of people, simple but accurate
people detection and tracking is an important requirement.

I. I NTRODUCTION

Companion robots are becoming more part of daily life
and are designed to directly interact with people. One neces-
sary subsystem for such robots is detection, recognition and
tracking of people as well as obstacles in the environment.

Laser Range Finders (LRF), besides being used for obsta-
cle detection are also an important part of people tracking
systems. The Tour-Guide robots Rhino and Minerva by
Burgardet al[1] and Thrunet al[2] featured LRFs for people
detection and collision avoidance. LRF present important
advantages over other sensing devices like high accuracy,
wide view angles, high scanning rates, etc., and are becoming
more accessible and safer (meaning class 1 lasers) for usage
in human environments.

Most approaches based on LRFs ([3], [4], [5], [6], [7],
[8]) place the sensors in the same height (single row or scan
plane) to detect and track some feature of the human body.
Due to laser safety regulations, applications using non class-
1 lasers are mostly limited to a low position, mostly about
knee height or below. Thus legs are widely used as features
for human detection and tracking.

In Fod et al [3] a row of several LRFs on different
positions in a room were used for tracking moving objects,
future positions are estimated according to a motion model.
Montemerloet al [4] also uses LRF from a mobile robot
for people tracking and simultaneously robot localizationby
using conditional particle filters. Xavieret al [5] focused on
people detection using a fast method for line/arc detection
but from a fixed position. Zhaoet al [6] proposed a walking
model to improve position prediction by including informa-
tion about leg position, velocity and state. The later model
was then used by Leeet al [7] and by Zhaoet al [8] but this
time from a mobile robot.
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A common problem is how to correctly identify people
features from laser measurements. Arraset al [9] using range
data and Zivkovicet al [10] using range data and images,
employ a learning method, particularlyAdaBoosting, to
determine which properties and in what amounts to consider
to improve detection. However, detection of multiple people
in cluttered environments is difficult especially considering
occlusion cases of people walking side by side.

Most tracking applications can deal with temporal occlu-
sions due to obstacles, such as the temporal disappearance
of the legs behind a dust bin. Multiple target tracking in
cluttered environments including crossings tracks is partof
most current works [11], [12], [13]. Mucienteset al [11]
extends the problem of single person tracking by considering
clusters of tracks (people) using Multiple Hypothesis Track-
ing (MHT). Arras et al [12] also uses MHT for tracking
without a leg swinging-motion model but introducing an
occlusion state, low level tracks (legs) are associated to
a high level track (people). Kondaxakiset al[13] present
also a multi-target approach using JPDA with a grid map
where occupancy counters of each cell decrease with time
to identify background objects.

One limitation still present in those systems is occlusion of
the tracked body feature for an extended time, for example if
the person stopped behind the dust bin. MHT based systems
will delete of the occluded track if it is missing for more
than some maximum time. The usage of additional features
can overcome this problem, provided that they are separated
over some distance (height) where occlusion stops. Instead
of a single layer system one can consider a multi-layered
arrangement of class-1 LRFs on a mobile platform. Multiple
features have the additional benefit of complementarity for
detection and tracking: a person can be described by the
union of a set of small swinging segments at low height
(legs), a bigger segment at medium height (waist) and a
larger segment at a high position (chest). This idea was
proposed in our previous work [14]. A multi-layered system
to extract multiple features is of course possible as long as
the person height is over some minimum value.

A multi-layered system has also being considered pre-
viously [15], [16]. Gidel et al[15] used a 4-layer laser
sensor for pedestrian detection, scanning planes are not
parallel so that slight tilting of the vehicle do not affect
detection. However, the vertical distance between features
on the target pedestrian depend on the distance from the
sensor. Hashimotoet al[16] use 3 LRFs around a wheelchair
for 360o scanning at 3 different heights, each sensor with its
own processing computer performing detection and tracking.



For every sensor, scan data is mapped into a occupancy grid
map, then target tracking and tracks association is performed.
Tracking in overlapping areas is done by cooperation of
respective computers and covariance intersection.

Our approach is then similar to Hashimoto’s[16]: we have
sensors are arranged in two parallel planes for 360o scanning,
separated at different heights from the ground depending on
the features to detect. However, we perform all computing
in a single computer, sensors in the same layer are fused to
combine their individual readings and then layers are also
fused for people detection.

The rest of the paper is organized as follows. In section
II present an overview of our current system. Section III
presents our approach for fusion of multiple sensor layers,
including feature extraction, people detection and position
estimation. Section IV presents experimental results for the
different fusion steps and for people detection. Finally,
conclusions and future work are left for section V.

II. SYSTEM OVERVIEW

Fig. 1 represents our layered approach, every layer has two
sensors facing opposite directions for 360o scanning (Fig.
1(a)), and two layers are used to extract features from upper
and lower parts of a person’s body (Fig. 1(b)).

(a) (b)

Fig. 1: Scanning from a double layered approach: (a) oppo-
site facing sensors (top view) and (b) two layers of sensors
(lateral view).

The processing pipeline of our system is best understood
referring to Fig. 2. Our people detection approach (before
tracking) involves four steps: fusion of sensors, segmenta-
tion, feature extraction and layer fusion. The outputs for
some of the steps are depicted as inlets in the figure: Fig. 2(a)
is the result of fusion of sensors (the top layer represented
in red and the lower in green), Fig. 2(b) corresponds to
geometrical feature extraction (features of people is shown),
and in Fig. 2(c) the detected people around the robot.

Our method involves two fusion steps: fusion of sensors
in a single layer and then fusion of layers. In the first step,
sensors facing opposite directions in the same layer are fused
to produce a 360o representation of robot’s surroundings.
There is overlapping of scan data from both sensors (darker
areas in Fig. 1(a)) so this fusion step must deal with
data duplication. Then, in the multiple layer fusion step,
raw data from every layer is processed to extract features
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Fig. 2: System overview.

corresponding to people, then a people model is computed
and from it allowing people detection and person position
and direction estimation.

After fusion of sensors in every layer, geometrical features
are extracted: large elliptical shapes corresponding to chest
areas and smaller circular shapes for legs. Fusion of extracted
features allows creating a cylindrical volume and from it the
estimated person position is computed. A simple yet logical
assumption here is that an elliptical shape corresponding to
a chest is always associated to one or two circular shapes
corresponding to legs (if no occlusions due to clutter are
considered), and that the large elliptical shape (chest) is
always overthe set of small circles (legs). Fig. 3 illustrates
this concept, here we present a sequence of continuous scan
images from a person walking (as seen from above), both
upper layer (large arc-like shape, chest) and lower layer
(small arc-like shapes, legs) are visible.

Fig. 3: A sequence of walking steps using actual scan data
using sensors from both upper layer (darker points on large
curve) and lower layer (smaller curves).

Our main research goal aims to develop a companion
robot with the objective to study the relationship of an
autonomous mobile robot and a group of multiple people
in a complex environment like public areas, where the robot
is to move and behave as another member of the group, while



achieving navigation with obstacle avoidance. Some of the
basic functions of such companion robot are depicted in Fig.
4, while the robot acts as another group member it has to
detect, recognize and track the fellow human members (Fig.
4(a)) and also move in the environment like the rest of the
members do (Fig. 4(b)).

(a) (b)

Fig. 4: Companion Robot with a group of people: group
members recognition (a) and obstacle avoidance (b).

The robot used for our research is depicted in Fig. 5. The
robot (Fig. 5(a)) is based onYamabicorobotic platform [17].
Two layers of LRF sensors are used, the lower layer is about
40cm from the ground while the upper layer is about 120cm.
Every layer consists of 2 LRF sensors, one facing forwards
and another facing backwards for a 360o coverage (Fig. 1 and
5). The sensors used in our system are theURG-04LX laser
range scanners (Fig. 5(b), [18] provides a good description
of the sensor’s capabilities).

(a) (b)

Fig. 5: Our robot system for multiple people detection and
tracking (a), fourURG-04LX are used (b).

III. F USION OF DOUBLE LAYEREDLRF SENSORS

Sensors in the same layer are facing opposite directions,
individual scan data are combined into a 360o representation.
The next step is fusion of both sensor layers, here data will
be divided into clusters with a segmentation function and
then clusters will be classified according to their geometrical
properties. Finally only those segments that match people
features will be selected and joined into a 3D model from
where people position is obtained.

A. Segmentation

Data clustering can be considered as the problem of break-
point detection and finding breaking points in scan data can
be considered as the problem of finding a threshold function
T to measure separation of adjacent points. Every pair of
neighboring pointsp j and pk are separated by an angleα
which is proportional to the sensor’s angular resolution (true
for points of two adjacent scan steps) and by a distance
D(p j , pk). Points are circularly ordered according to the
scanning step of the sensor.

A cluster Ci , whereCi = {pi , pi+1, pi+2, · · · , pm}, is de-
fined according to a cluster membership functionM

M (p j , pk) = (θk−θ j) ≤ α ∧D(p j , pk) ≤ T (p j , pk) (1)

such that for every pair〈p j , pk〉 of adjacent points, the
Euclidean distanceD(p j , pk) between them is less than a
given threshold functionT (p j , pk) for p j , pk. A new point
pn is compared to the last known memberpm of a given
clusterCi asM (pm, pn).

Now, the threshold functionT is defined for a pair of
points, as in the work of Dietmayer [19], as:

T (pi , p j) = C0 +C1min(r i , r j) (2)

with C1 =
√

2(1−cos(α). Dietmayer’s work includes the
constantC0 to adjust the function to noise and overlapping.
In our caseC0 is reemplaced by the radiusR of the accuracy
area forpi as base point plus a fixed threshold value (10cm in
our case).R is defined according to theURG-04LX sensor
specifications [18], [20] as:

R(pi) =

{

10 if 20mm≤ r i ≤ 1000mm
0.01× r i otherwise

(3)

The proposed threshold functionT uses this accuracy infor-
mationR when checking for break points, if two neighboring
points have a large range value, it will be most probable that
they form part of the same cluster for their bigger accuracy
areas.

There is also a cluster filtering step that will drop segments
very small to be considered of significance.

B. Feature Extraction

The idea of feature extractionis to match the sensor
readings with one or more geometrical models representing
expected behaviour of the data. For example if a LRF sensor
data scanning a wall, then theexpected behaviourof a wall
scan data isa straight line. Also if the same sensor is
to scana person then the expected behaviour is a set of
points formingan arc. So in order to identify walls a first
requirement is to correctly associate the scan data with some
straight line model, for people the same: associate a set of
scan points to an arc shape (a circle or an ellipse).

Before applying any fitting method, it is important to
have some information about the shape of the cluster that
allows selecting the method. The information about clusters
is extracted as a set of indicators like number of points,
standard deviation, distances from previous and to next
clusters, cluster curvature, etc.



One of the indicators is the cluster’slinearity; our ap-
proach here is to classify the clusters intolong-and-thin
and those rathershort-and-thick. The rationale behind this is
that, straight line segments tend to be long and thin, round
obstacles, irregular objects, etc., do not have this appearance.

Linearity is achieved by computing the covariance matrix
Σ for the clusterCi and then its eigenvaluesλmax and λmin

that define the scale and its eigenvectorsv1 andv2 orientation
(major and minor axes) of the dispersion ofC . The ratio
ℓ = λmax/λmin defines the degree of longness/thinness of the
cluster. We set threshold values for ratioL and forλmax.

The ellipticality factor ε is computed as the standard
deviation σ of the residuals of a ellipse fitting processes
using the Fitzgibbon method [21]. The distance between a
cluster point and an ellipse is computed usingRamanujan’s
approximation.

Only clusters with good ellipticality value are selected and
segments passing the linearity criteria (that is lines) canbe
easily rejected since they do not belong to people.

We assign a weight valuew to every indicatori and
compute an scoring functionS for every segmentj in in
layer Ψ, whereΨ ∈ {top, low}, as:

S
j =

n

∑
i
w

Ψ
i H

Ψ
i (I j

i ) (4)

whereH
Ψ

i : R →{−1,1} is a binary classifier function for
the i-th indicator which compares whether the given indicator
is under some threshold value. Table I presents an example
of indicators and their classifiers, the actual list of indicators
is similar to that presented by Arraset al in [9]. Weight
valueswi and thresholds for every indicatori were defined
after experimental validation.

TABLE I: Example of indicators and their classifiers
Indicator Classifier Meaning

width w w≤WΨ
max a leg or a chest has a width no

bigger than the threshold
linearity ℓ ℓ ≤ ℓΨ

max leg and chest features are not linear
curvaturek̄ k̄≥ k̄Ψ

min leg and chest features are curved
ellipticality ε ε ≤ εΨ

max the fitting error of ellipse for chest
under the threshold

C. People Model and Position Detection

3D projection of two planes of scan data from the layered
sensors can be used to represent the position and direction of
a person. The set of geometrical features extracted from the
former step are mostly ellipses and circles. If they belong
to a person another important criteria should be meet: the
large elliptical segment should come from the upper layer
and the small circles from the lower layer. No large ellipses
are possible for a person in the leg area. The small circles can
not be over the large ellipse (the person height is restricted
according to the height of the upper layer).

To properly establish the previous requirements, it is
necessary to associate segments in the upper layer with those
in the lower layer, this is to find the corresponding legs for
a given chest. Lattet al. [22] present a study about how

human motion, step length, walking speed, etc. are selected
to optimize stability. Their study present data about different
speeds people prefer when walking. If the average values
of step length are used then it is possible to define the
limits of motion of the legs with respect to the projected
chest elliptical area. Figure 6 helps understanding this idea.
The average leg heighth is about 84cm, and the height of
the lower layer of sensorsl is fixed at 40cm. s is the step
length which depends on the speed, for example 73cm for
an average speed of 1.2m/s [22]. d is calculated as:

d = 2(H − l)tan(θ), whereθ = sin−1(
s

2h
). (5)

l

h

H

S

θ
d

Fig. 6: Simple representation of human step to compute the
distanced between leg segments while walking.

According to [22] the step lengths for three different
walking speeds are presented in Table II. In this table we
include the parameterd from Fig. 6 about the distance
between leg segments when walking at the different speeds.

TABLE II: Step length according to speed and distance
between leg segmentsd

Mode Speeda Step Lengthb Distance between
leg segmentsd c

normal 1.2±0.04m/s 73.0±3cm 34.40cm
very slow 0.5±0.05m/s 47.0±3cm 22.29cm
very fast 2.1±0.1m/s 86.0±6cm 39.64cm

a,b Values according to Lattet al. [22].
c estimated from Eq. 5.

With an estimation of the maximum value ford, the
separation of legs at the lower layer height, we can set a

search radius of
d
2
±ξ at the center of the chest elliptical area

projected into the lower layer to search for the corresponding
legs for the chest. We use average walking step length from
Latt et al. [22], at normal walking speed, to compute the
value ford.

IV. EXPERIMENTAL RESULTS

The robot used for our research was presented in Fig.
5, the computer operating the robot is a Intel Pentium
Core Duo based notebook running (Linux kernel 2.6.24) as



operating system and robot control board is powered by a
Hitachi SH-2 processor. The robot system uses4 URG-04LX
range scanners fromHokuyo Automatic Co., Ltd.[20], small
size (50x50x70mm), covers distances up to 5.6m, distance
resolution of 10mmand angular resolution of 0.36o, angular
range of 240o operating at 10Hz. Scan data from each
sensor consists of 682 points circularly ordered according
to scanning step.

Data from each sensor is read every 100ms by a driver
processes and registered in parallel into a shared memory
system (SSM[23]) based on IPC messaging and multiple
ring-buffers with automatic timestamping, one driver process
per sensor. SSM also allows to record raw sensor data into
log files and to play it back with the same rate as the sensor
(10Hz in this case).

Client processes read scan data from the ring-buffers
according to sensor’s pose (those in the top layer and those
on the low layer), pairs of LRF sensors are processed in
the fusion step, sensor layers are further fused and finally
people position is computed. The processing time for the
two layers (4 sensors), from single layer fusion to people
position detection, was below 40ms, fast enough given the
sensor’s scanning speed.

We performed an experiment for people detection and
position estimation from a mobile robot. In the experiment,
5 persons walked around the robot and additional person was
taking the experiment video. Log data from each sensor was
recorded, people position detection tests were performed off-
line by playing back this log data using our SSM system. Fig.
7 corresponds to the group of people surrounding the robot.

Fig. 7: An experiment for multiple people position estimation
using the proposed method.

Fig. 8 shows results of LRF data segmentation and feature
extraction: raw data from each layer (top layer in Fig. 8(a))is
divided into clusters (Fig. 8(b)) and each cluster’s indicators
analyzed to extract those segments with human-like features
and average sizes (Fig. 8(c)).

In this figure, arrows in Fig. 8(a) represent the location of
people in the environment, most of them were successfully
detected in the results of feature extraction (8(c)). However
one of them has a height below the standard so top-level
sensors were actually scanning his neck area, accordingly his
chess ellipse is smaller than the allowed values, thereforewas
rejected. Another interesting case is the segment marked as
“column” in Fig. 8(a), although its curvature and linearity

indicators classify it as person, the boundary length and
segment width were far bigger than the allowed values,
reducing its scoring and marking it for rejection.

column

(a)

(b)

(c)

Fig. 8: Results of LRF data segmentation and feature ex-
traction: raw data ((a)) is segmented ((b)) and then classified
((c)).

Fig. 9 shows the results of an experiment for people
detection and position estimation from a mobile robot. In the
experiment, 5 persons walked around the robot and additional
person was taking the experiment video (Fig. 9(a)). Log data
from each sensor was recorded, people position detection
tests were performed off-line by playing back this log data
using our SSM system.

A 3D tool was created to visualize inspect how the people
detection worked; in Fig. 9(b) chest ellipses and leg circular
ellipses are detected then we place a 3D wooden doll, as
a representation of a person, in the estimated position the
person should have. Results were verified by human operator
comparing the experiment video with results.

The members have varied body sizes, from broad and tall
to thin and short. Some of the members have a height a
little under the average, as result their chest ellipses were not
correctly detected in the people detection step. As presented
in Fig. 9(b), the person to the right of the robot (represented
with blue line segments) is missing although circles from
legs are present.

Additional snapshots of experimental results are presented



(a)

(b)

Fig. 9: Results of the people detection, (a) snapshot (b) 3D
models in estimated positions of people in the experiment.

in Fig. 10, the robot is represented in all cases as blue line
segments. Fig. 10(a) and 10(c) shows raw scan data from
both layers (red for the upper layer and green for the lower
one), and in Fig. 10(b) and 10(d) a 3D representation of
the human detection and position estimation. In the cases
of 3D representation, the raw scan data is plotted together
with wooden dolls enclosed in the estimated people positions
represented with elliptical shapes, a large one for the chest
area and smaller ones for the extracted leg areas.

In Fig. 10(c) there are two rather large arc-like segments
in the raw scan image and two large elliptical shapes in the
3D representation in Fig. 10(d), in both layers. That is the
column inside the indoor environment, as already explained
in Fig. 8(a). The people detection method discards this
elliptical object because its dimensions are larger than the
expected for people, those elliptical objects are represented
with red color in this figure. Also we do not expect large
elliptical objects from the lower layer so discarding this
column as a non human object was simple.

V. CONCLUSIONS ANDFUTURE WORKS

The problem of multiple people position detection by
fusion of multiple LRF sensors arranged in a double layer
structure was presented in this paper. Instead of using
different sensors of complementary capabilities, we used
the same type but at different heights (layers), this gives a
different perspective which also helps solving simple cases
of occlusion where one sensor is occluded and the other is
not.

The addition of an extra layer of LRFs to detect chest
elliptical areas improve the estimation of people positionas
the lower part of body (the legs) move faster and wider than

(a) (b)

(c) (d)

Fig. 10: Experimental results with raw scan data ((a) and
(c)) and the corresponding people detection and position
estimation ((b) and (d)).

the chest area. The combination of both areas creates a 3D
volume which helps locating the position of the person more
closely related to the center of this 3D volume and as a
measure of the possible direction the person is facing. Al-
though research exists in the area of detection and tracking,
the proposed approach is simple and fast enough to be used
for real time detection of people in robot’s surroundings.

As future work, multiple people tracking will be con-
sidered. Also the effectiveness of our method in cluttered
environments will be studied. Future steps of our research
include understanding people group motion and recognition
of group members.
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