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Abstract—We address and solve a number of problems in the
context of a robot surveillance system based on a pair of dioptric
(fisheye) cameras. These cameras provide a hemispherical field
of view that covers the whole robot workspace, with some
advantages over catadioptric systems, but there is little previous
work about them. Then, we had to devise and implement a
number of novel techniques to achieve robust tracking of moving
objects in dynamic, unknown environments from color image
sequences in real time. In particular, we present a new two-phase
adaptive background model that exhibits a robust performance
when there are unexpected changes in the scene such as sudden
illumination changes, blinking of computer screens, shadows or
changes induced by camera motion or sensor noise. The system
is also capable of tracking the detected objects when they are
not in movement. We also deal with fisheye camera calibration
to estimate both intrinsic and extrinsic parameters, as well as the
estimation of the distance between the system and the detected
objects with our dioptric stereo system. Experimental results are
reported.

Robotics research, from its begining, has been always
focused on building robots which help human beings in
their daily tasks while both of them coexist in the same
environment. That means new robot generations have to deal
with dynamic, unknown environments, unlike industrial robots
which act in a restricted, controlled, well-known environment.
For that reason, one of the key issues in this context is to be
aware of what is happening around.

In fact, robot performance in any real environment requires
to detect people and/or other objects, particularly if they are
moving, in the robot’s workspace. On the one hand, interaction
tasks require detection and identification of the objects with
which to interact. On the other hand, the safety of all elements
present in the robot workspace should be guaranteed at any
time, specially when they are human beings. Thus, it is
important that the robot quickly detects the presence of any
moving element to be able to properly react to the element
movements.

So, among the available robot sensors, cameras might be
suitable for this goal, since they are an important source of
information. Nevertheless, it is not straightforward to success-
fully deal with a non-constrained environment by using tradi-
tional cameras due to its limited field of view. That constrain
could not be removed by combining several images captured
by rotating a camera or strategically positioning a set of them,

because it is necessary to establish any feature correspondence
between many images at any time. This processing entails a
high computational cost which makes them fail for real-time
tasks.

An effective way is to combine mirrors with conventional
imaging systems [1] [2] [3]. The obtained devices are called
catadioptric systems. Moreover, if there is a single viewpoint,
they are referred as central catadioptric systems [4]. This is
a desired feature in such imaging systems since it describes
world-image mapping. In fact, a single viewpoint implies that
all rays go through a 3D point and its projection on the image
plane goes through a single point in the 3D space. Conven-
tional perspective cameras are devices of a single viewpoint,
for example. Although the central catadioptric imaging can be
highly advantageous, they unfortunately exhibit a dead area in
the centre of the image what can be an important drawback
in some applications.

With the aim of overcoming all the above drawbacks, a
dioptric system was used. Dioptric systems, also called fisheye
cameras, are systems which combine a fisheye lens with a
conventional camera [4] [5]. Thus, a conventional lens is
changed by one of these lenses which has a short focal
length what allows cameras to see objects in an hemisphere.
Although fisheye devices present several advantages in front
of catadioptric sensors such as no presence of dead areas in
the captured images, a unique model for this kind of cameras
does not exist unlike central catadioptric ones [6].

In this work, we have focused on dioptric systems to
implement a robot surveillance application for fast and robust
tracking of moving objects in dynamic, unknown environ-
ments. Although our final goal is to design an autonomous,
mobile manipulation robot system, here we present the first
stage: novel techniques for robust tracking of moving ob-
jects in dynamic, unknown environments from color image
sequences such that manipulation tasks could be safely per-
formed in real time when the robot system is not moving. For
that, three different related problems have been tackled:

• moving object detection
• object tracking
• distance estimation from the system to the detected

objects



First of all, a new robust adaptive background model has
been designed. It allows the system to adapt to different
unexpected changes in the scene such as sudden illumination
changes, blinking of computer screens, shadows or changes
induced by camera motion or sensor noise. Then, tracking
process from two omnidirectional images takes place. Finally,
the estimation of the distance between the system and the
detected objects must be done by using an additional method.
In this case, information about the 3D localization of the
detected objects with respect to the system was obtained from
a dioptric stereo system.

Thus, the structure of this paper is as follows: the new robust
adaptive background model is described in Section 2, while
in Section 3 the tracking process is introduced. An epipolar
geometry study of a dioptric stereo system is presented in
Section 4. Some experimental results are presented in Section
5, and discussed in Section 6.

I. MOVING OBJECT DETECTION

Research in human and object detection has taken a number
of forms. Well-known segmentation techniques from a taken
image are thresholding or frame subtraction. However, on
the one hand, it is difficult to deal with threshold selection
when it is working with an unknown, dynamic environment
and targets to track can have different features. Actually, the
uncertainty provided by those specified work conditions also
makes that automatic threshold search methods, mainly based
on histogram properties, fail [7]. In that way, other experiments
to obtain a robotic assistant in which a person is detected
and then followed by a mobile robot [8] [9] [10] [11] have
been carried out. Nevertheless, in spite of the fact that existing
algorithms are very fast and easy to use, image processing
for object identification is very poor since it is color- and/or
face-based. This restricts their utility because it is not viable
to track objects of a particular color, which has also to be
significantly different from the background, or it constrains
people to always face the vision system.

On the other hand, although the image difference method
provides a good detection of changing regions in an image, it
is important to pay attention to several uncontrolled changes in
the system environment which can produce multiple false ne-
gatives and make the system fail. These dynamic, uncontrolled
changes can be divided into:

• minor dynamic factors, such as, for example, blinking of
computer screens, shadows, mirror images on the glass
windows, curtain movement or waving trees, as well as
changes induced by camera motion, sensor noise, non-
uniform attenuation or atmospheric absorption, among
other factors

• sudden changes in illumination such as switching on/off
a light or opening/closing a window

Different research has been developed to adapt to this
changes. One of the most common is the background subtrac-
tion approach, which has been proposed by several researchers
[12] [13] [14] [15] [16]. Basically, a background model, which
is built after observing the scene several seconds, is used to

identify moving objects by thresholding the new frame with
respect to the built background model. However, this approach
presents two important drawbacks:

• everything observed when the background model is being
built is considered background

• no sudden change in illumination occurs during the whole
experiment

It is important to take into account that, unlike most of them
which each background pixel is represented by a Gaussian
distribution, Stauffer and Grimson [17] presented adaptive
background mixture models. However, as it was pointed out
in [18], some issues have to be solved.

Therefore, a novel algorithm is proposed here. It is divided
into two different phases, as can be seen in Figs. 1 - 2:

1) In the first phase, an initial background model is
obtained by observing the scene during several se-
conds. However, unlike most background estimation
algorithms, another technique for controlling the activity
within the robot workspace is performed. With the aim
of reducing the computational and time cost, this control
is performed by means of a simple difference technique.
In that way, there is no danger to damage people who
approach the robot while this initial model is being built.
Thus, basically, in this phase, a simple frame-difference
approach is performed in order to detect moving objects
within the robot workspace. Then, two consecutive mor-
phological operations are applied to erase isolated points
or lines caused by the dynamic factors mentioned above.
In this point, two different tasks are carried out:

• On the one hand, adaptive background model is
updated with the values of the pixels classified
as background in order to adapt it to some small
changes which do not represent targets

• On the other hand, a tracking process, which is
explained in the next sections, is performed

2) In the second phase, detection and identification moving
object process starts. When a human or another moving
object enters in a room where the robot is, it is detected
by means of a two-level processing:

• pixel level, in which the adaptative background
model, initially built in the previous phase, is used
to classify pixels as foreground or background. It is
possible because each pixel belonging to the moving
object has an intensity value which does not fit into
the background model. That is, the used background
model associates a statistical distribution (defined
by its mean color value and its variance) to each
pixel of the image. Then, when an interest object
enters and/or moves around the robot workspace,
there will be a difference between the background
model values and object’s pixel values. Actually, a
criterion based on stored statistical information is
defined to deal with this classification and it can be
expressed as follows:



b (r, c) =

{
1 if |i (r, c)− µr,c| > k × σr,c

0 otherwise
(1)

where b (r, c) is the binary value of the pixel (r, c)
to be calculated, i (r, c) represents pixel brightness
in the current frame, µr,c and σr,c are the mean
and standard deviation values calculated by the
background model respectively and k is a constant
value which depends on the point distribution

• frame level, whereby the raw classification based
on the background model is improved as well
as the model is adapted when a global change
in illumination occurs. A proper combination of
substraction techniques has been implemented. In
that way, a different segmentation process is applied
at frame level and it is used to improve the seg-
mentation carried out at pixel level. Furthermore,
this processing allows the system to identify global
illumination changes. That is, it is assumed that
an significant illumination change has taken place
when there is a change in more pixels than a half
of the image size. When an event of this type
occurs, a new adaptative background model is built
because if it was not done, the application would
detect background pixels as moving objects, since
the model is based on intensity values and a change
in illumination produces a variation of them.

As in the previous phase, after properly segmenting an
image, two consecutive morphological operations are
applied to erase isolated points or lines caused by small
dynamic factors. Later, pixels classified as background
are incorporated to the adaptive background model,
while foreground pixels are processed by applying a
tracking method.

II. TRACKING MOVING TARGETS

Once targets to be tracked have been identified, the next step
is to track them. For that, first of all, a connected-component
labeling algorithm is performed. However, due to segmentation
errors, it might be obtained more than one labeled component
for the same target. Thus, a merge algorithm, based on neigh-
bourhood and feature similarity, is applied. Then, a minimum
rounded rectangles are generated. After that, with the aim
of performing the corresponding tracking, a pattern is built
from each of them. In this case, a pattern is intended as the
data structure such that allows the system to track the moving
objects by means of matching an object in two consecutive
frames even when it suffers a partial or whole occlusion.

Thus, in our case, a pattern is composed of two different
things:

• a representative image of the target, that is, it is not
possible to directly compare two images of the same
object when they are provided by an omnidirectional
image. It is due to the fact that every object has different
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Fig. 1. Phase-1 flowchart of implemented two-phase algorithm for moving
object detection in unknown, dynamic environments
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Fig. 2. Phase-2 flowchart of implemented two-phase algorithm for moving
object detection in unknown, dynamic environments



orientation depending on its position inside the scene. So,
several rotations would be necessary in order to correctly
match the images of the same object in two different
frames. Thus, it is necessary to apply a transformation
from the circular omnidireccional image to a perspective
one (see Fig. 3. This is done only for each region detected
as object of interest since transformation of the whole
image could become very high time-consuming.

• a feature array whose elements contain information about
brightness and blob width and height, among other things,
used to properly match to images of the same object in
two consecutive frames as well as two stereo images

Fig. 3. Representative perspective image from the labeled omnidirectional
image

Therefore, on the one hand, representative images are com-
pared with the extracted from the previous frame or the another
stereo image. In this way, a pixel-similarity likehood between
representative images is obtained. On the other hand, a feature-
similarity likehood is generated from feature array comparison.
Both likehoods are properly combined to match two images
from the same object in consecutive frames or frames taken
from a dioptric stereo system.

III. STEREO SYSTEM

For approximately determining the distance from the sys-
tem to an objective we need to estimate the correspondence
between omnidirectional images, that is, the epipolar equation.

From the point of view of stereo vision, an epipole is defined
as the projection of the camera center on the image plane
of another camera. Unlike traditional cameras, two epipoles
are visible, since any camera is within the field of view of
each other. For that reason, in the case of omnidirectional
cameras, it is not necessary to use a third external object
for stereo calibration. This is the idea in which Zhu et al
[15] [16] based to implement a virtual stereovision system
with a flexible baseline in order to detect, track and localize
moving human subjects in unknown indoor environments.
In the literature, other approaches developed for catadiotric
systems can be found [16] [19] [20] [21]. However, even
though there is almost no work with dioptric stereo systems,

we have implemented a process to estimate the distance from
the dioptric stereo system to the detected objects.

The guidelines of the distance estimation method are as
follows:

• a matching process between images taken by different
cameras is done. First, the adaptive background model
at two levels is independently performed for the images
captured by each camera. Then, each detected blob is
described by means of a feature array whose elements
contain information about brightness and blob width and
height, among other things. Next, each feature array
is compared with all the detected blobs in the frame
taken by the other camera in the system, while the
matching process included in the implemented moving
object detection method is simultaneously performed.
Thus, a similarity likelihood is calculated and a matching
decision is made based on it.

• detection of the other camera in each frame, as it is
depicted in Fig. 4. In fact, this step is necessary to be
performed only once because the baseline of the stereo
system is fixed.

• estimation of the distance with respect to each camera
from triangulation geometry, as it is shown in Fig. 4. The
triangle to solve is determined by the projection ray of a
3D point of the real world on each plane image as well
as the projection ray of the center of the other camera of
the system. It is possible thanks to the calibration step
since the projection rays can be estimated, as mentioned
above.

Fig. 4. Camera detection in images captured by the two cameras

IV. EXPERIMENTAL RESULTS

Two different experiments have been carried out to check
the designed application performance. First, the performance
of the moving object detection was evaluated by using only
one fisheye camera. After that, the obtained estimation of the
detected object distance through our dioptric stereo system was
analysed. In this section, some of these results are provided.

A. Experimental set up

For both kinds of experiments carried out, a mobile manipu-
lator which incorporates a visual system composed of 2 fisheye
cameras mounted on the robot base, pointing upwards to the
ceiling, to guarantee the safety in its whole workspace. Figs. 5
depicts our experimental setup, which consists of a mobile
Nomadic XR4000 base, a Mitsubishi PA10 arm, and two
fisheye cameras ( SSC-DC330P third-inch color cameras [22]
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Fig. 5. Experimental setup: external view of the arm and cameras.

with fish-eye vari-focal lenses YV2.2x1.4A-2, which provide
185 degree field of view).

Thus, on the one hand, a single fisheye camera was used to
evaluate the moving object detection performance. The robot
system was located in the center of our laboratory where
almost all the space was covered and where most of the
uncontrolled, dynamic factors named above were present (e.g.
blinking of computer screens, shadows, mirror images on the
glass windows or variations in illumination due to the different
time of the day or the switch on/off a light). On the other
hand, the dioptric system was used. In both cases, the images
to process were acquired in 24-bit RGB color space with a
640x480 resolution.

B. Moving Object Detection Evaluation

As it was pointed out, the first series of experiments were
to evaluate the performance of the novel adaptative, robust
background model. For that, illumination conditions and object
positions were changed. Two sequences of the images as a
result of applying the novel updated background model under
the same illumination conditions is depicted in Fig. 6. As it can
be seen, the method is able to visually track moving objects
without constraints such as clothes color or illumination.

In a similar way, illumination conditions were changed
and, as it is shown in Fig. 7, the obtained results were also
successful.

V. CONCLUSIONS

In this paper, a robust visual application to detect and track
moving objects within a robot workspace has been presented
based on a pair of fisheye cameras. These cameras have the
clear advantage of covering the whole workspace without
resulting in a time consuming application, but there is little
previous work about this kind of devices. Consequently, we
had to implement novel techniques to achieve our goal.

Thus, the first subgoal was to design a process to detect
moving objects within the observed scene. After studying
several factors which can affect the detection process, a novel
adaptive background model has been implemented where
contraints such as waiting a period of time to build the initial
background or illumination conditions do not exist. In a similar

Fig. 6. Results of applying the novel adaptative background model with
different subjects

Fig. 7. Results of applying the novel adaptative background model under
different illumination conditions



way, it is also capable of tracking the detected objects when
they are not in movement. In addition, the designed method
includes a matching process between two consecutive frames.

The next step is to estimate the distance from the detected
objects to the system. For that, a stereo dioptric system with
fixed baseline has been built. Therefore, it was necessary
to perform a calibration process in order to obtain the fun-
damental matrix. Three different toolboxes were tested, but
only two were used in the end. Finally, a method to estimate
distance from the objects to the system was implemented. In
this case, a triangulation technique is used. It is possible to
perform because the cameras can see each other. It must be
taken into account that epipolar geometry of the stereo dioptric
systems was not used, although the combination of that with
the current implementation in order to improve the accuracy
in the matching process is part of our future work.
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