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Abstract—People searching and tracking (SAT) is a key 

technology for interactive robots since the tracked people are 

sheltered by environments frequently. For robots, it is a 

tracking problem given that the target is observable, but 

otherwise it is a searching problem. Traditional tracking 

algorithms may lead to divergent estimation of object position 

when moving objects are unobservable. Moreover, SAT 

conditioned on simultaneous localization and mapping (SLAM) 

is complex since it aims at estimating people position, robot 

position, and map under sensor uncertainty. Motivated by this, 

we propose a novel stream functions and Rao-Blackwellised 

particle filter based SAT algorithm in this paper. This laser 

based algorithm is conditioned on simultaneous localization and 

mapping (SLAMSAT) to search and track people. With this, 

the position of the targeted person sheltered by the environment 

can be successfully estimated by the virtual stream field in a 

mapped environment. Our experimental results show that this 

algorithm can search and track people effectively.  

 

I. INTRODUCTION 

IN a dynamic environment, the robot navigation problem 

becomes interactive and it includes leading, following, 

intercepting, and obstacle avoiding. For most applications, a 

robot should be capable of tracking, following, 

self-localization, and obstacle avoidance in an unknown 

environment. Most tracking algorithms aim at correctly 

estimating the position, velocity, and acceleration of moving 

objects based on the past and sensor measurement [1]. Object 

tracking can be realized with Kalman filter (KF) with 

constant velocity model and/or constant acceleration model 

[2]. With particle filter (PF), objects with nonlinear states, 

non-Gaussian probability distribution, and multi-hypotheses 

are tracked with higher accuracy although the price is its high 

computational complexity. SLAMMOT uses scan matching 

and EKF with laser range finders to simultaneously estimate 

robot position, map, and object state [3]. The conditional PF 

estimates people motion conditioned on the probability 

model of robot position with a previously mapped 

environment [4]. 
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Fig.1. The relationship among SLAM, SLAP, SLAMMOT and SLAMSAT. 

 

The tracking problem will turn into the searching problem 

if moving objects are unobservable. In [5], a map-based 

tracking algorithm using Rao-Blackwellised particle filter 

(RBPF) models the physical interaction between the ball and 

the wall even if the ball is unobservable. However, this 

algorithm can only track passive objects. Dynamic action 

spaces can be utilized to search and explore a moving object 

which goes toward one of the known destinations [6]. SAT 

techniques autonomously search and track objects using 

Bayesian estimator [7]. However, these algorithms cannot 

achieve simultaneous localization, tracking, and searching in 

an unknown environment. Motivated by this, a 

self-localization and partially observable moving object 

tracking (POMOT) algorithm is proposed in [8]. This 

algorithm is designed for a static and known environment. 

However, a robot has to localize itself, map, and search and 

track objects in most applications. 

 As shown in Fig. 1, objects can be static or dynamic. If the 

dynamic object is out of sight, it will be an unobservable 

object. Otherwise, it will be an observable object. 

Simultaneous localization and people tracking (SLAP) is to 

estimate robot and people position [4]. Localization and 

POMOT is to estimate robot and people position even if the 

person is unobservable [8]. SLAMMOT is to estimate robot, 

map and moving objects position [3].  

In this paper, we propose a novel stream field based SAT 

algorithm conditioned on SLAM called SLAMSAT. 

SLAMSAT is to estimate robot, map and people position 

even if the person is unobservable. With stream field, we 

model interactions among goal position, updated 

environmental features, and people position. Traditional 

tracking algorithms deemed that objects move actively with 

velocity and acceleration generated themselves. But from the 

viewpoint of the stream field, object motion is passive due to 

the attraction and rejection forces resulted from the goal and 

environment. Based on this, we can still keep SAT the object 
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position based on the virtual stream field. The remainder of 

the paper is organized as follows. Section II describes the 

stream field based motion model for the RBPF based SAT 

proposed in Section III. Section IV gives our AdaBoost 

based leg detection. In Section V, we present the proposed 

SAT algorithm which combines the stream field and RBPF 

conditioned on the EKF SLAM algorithm. The experimental 

results are given in Section VI. Finally, Section VII 

concludes this paper. 

II. MOTION MODEL USING STREAM FIELD 

 

 
Fig.2. An example of a real environment and its virtual stream field. (a) 

Obstacle avoidance. (b) Stream field. (c) Real environment. 

      

Complex potential is often employed to solve fluid 

mechanics and electromagnetism problems [9]. For an 

irrational and incompressible flow, there exists a complex 

potential consisting of the potential function ),( yxφ  and 

stream function ),( yxψ , where ),( yx  is the 2-D coordinate. 

Although the complex potential has been studied quite 

extensively in motion planning and obstacle avoidance due to 

its high efficiency, it is seldom considered in object tracking. 

Motion model plays a key role in probability based tracking 

algorithms. To achieve on-line prediction of motion model 

according to the estimated map and virtual goal, we adopt 

stream field based motion model proposed in [8] for SAT 

algorithm in this paper. In the following, we give a brief 

description of this motion model. More details can be found 

in [8].  

Stream field consists of a sink flow ),(sin yxkψ  and a 

doublet flow ),( yxdoubletψ  by 
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where ),( ss yx is the center of sink, ),( dd yx is the center of 

doublet, a is the radius of doublet, and C is the constant 

proportion to the flow velocity. If the number of doublet 

flows is more than one, the stream field will be superposed by 

the sink flow and doublet flows. Details of stream fields can 

be found in [10]. Stream functions will be computed if the 

robot position, object goal, and obstacle positions are known. 

The object velocities are computed by the derivative of (1). 

In typical tracking algorithms, the object position at time t 

is modeled by ),( 11 −−= ttt f vxx , where 1−tv  is object 

motion at time t-1, and f is the object motion model. A robot 

cannot track a moving object successfully when the object is 

unobservable. By (1), we assume that objects will avoid a 

known obstacle (doublet) and move toward a virtual goal 

(sink) as in the stream field (Fig. 2(c)). Since the stream field 

constructs an active field where an object is moved inactively 

by attraction and rejection forces, we can predict object and 

goal position and construct search path using the known 

stream field. 

 A stream field is constructed by a virtual sink and a 

doublet resulted from a known environment, and then the 

object motion is predicted by 
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where ),( 1,1, −− toto yx is the object position at time t-1. To 

estimate the position of virtual goal of an unobservable 

moving object, a probability based tracking algorithm with 

multi-hypothesis would work better than that with single 

hypothesis. Thus, Section III adopts RBPF to estimate N 

possible positions of an object goal. 

III. RBPF BASED SAT USING STREAM FIELD BASED 

MOTION MODEL 

To improve the accuracy of motion prediction in search 

case, we adopt stream field based motion model. However, 

the major problems of tracking with multi-hypothesis (e.g. 

PF) using this motion model are its heavy computational load 

and the requirement of precise probability distribution for 

prediction in the searching case. Since RBPF is capable of 

reducing the heavy load due to multi-hypotheses and 

approximating the probability distribution function more 

precisely [11], we adopt RBPF for SAT. Our RBPF based 

SAT algorithm using stream field based motion model is 

quite different from traditional ones where prediction will 

diverge if the moving object is unobservable.  

Let the stream sample set { },1|, Niw
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where i

kO  is object state of the ith particle at time k including 

the mean ),( ,, kykx OO  and covariance
kO,Σ . Object goal i

kG  

consists of direction kG ,φ  and intensity
kU . D   is doublet 

position generated by map features. In our RBPF based SAT, 

PF estimates goal state 
i

kG  and KF estimates object state i

kO . 

S

G

Goal

Starting point

obstacle

Robot

Object

Obstacle

 
(a)                  (b)                                        (c) 



 

 

 

We factorize stream distribution into goal set distribution, 

object set distribution, and stream set distribution at time k-1 

as follows. 
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 After sampling goal positions, object set distribution is 

divided into two cases. It will be the tracking case if the robot 

detects object successfully, otherwise it will be the searching 

case.  
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For the tracking case, object set distribution is derived from 

Bayes theorem and updated by KF as follows.  
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Finally, we resample stream sample set after computing the 

particle weightings. Based on the predicted object goal 

position, the algorithm can keep predict the object position 

when the object features are occluded or are fragmentation.  

IV. LEG DETECTION 

Detection is a necessary stage prior to tracking. 

Algorithms of laser based people detection usually work well 

only if the scan data of one or two of human legs is available. 

In [14], AdaBoost based leg detection is proposed for people 

detection.  However, such algorithm will fail if the scan data 

of either leg is not available due to the sheltering effects 

resulted from environments. Another possible solution is to 

detect based on motion. However, it is difficult to distinguish 

slower legs from static objects.  

 
In [15], the authors propose a multi-hypothesis leg-tracker 

for occlusion problem under known map. In SLAMSAT, a 

robot has to distinguish leg features (moving object) from 

static ones. Static features will be considered to be added into 

maps while leg features will be the candidates of tracked 

targets.  The robot will search the dynamic feature based on 

the virtual stream field if there is not any dynamic feature 

detected.  

 

 In this section, we design a leg detection algorithm which 

is composed of AdaBoost, scan association, and data 

association of old landmarks. The decision flow of this 

detection algorithm is shown in Fig. 3. After applying 

AdaBoost based detection proposed in [14], all features are 

divided into leg features and non-leg features. Then, scan 

association determines whether a feature is static or dynamic 

by comparing scanned features at time t with those at time t-1. 

Let the Euclidean distance of a feature position at time t and a 

feature position at time t-1 be d. Please note that the feature at 

time t-1 could be static or dynamic. As shown in Fig. 4, a 

feature will be classified into a static one if d is smaller than 

the radius of black circle. Otherwise, this feature will be 

classified as a dynamic one. 

 Data association distinguishes whether a feature is for 

mapping or tracking based on the decision of scan 

association and AdaBoost based leg detection. If the static 

feature determined by scan association is not associated with 

any old landmark, it will be deemed as a new landmark. If a 

static or dynamic feature is associated with an old landmark, 

it will be deemed as an old landmark. Otherwise, the leg 

feature is still deemed as the leg. 

 It is a simplified task to distinguish static features from 

dynamic features using data association with a known map. 

However, such task will become difficult if a robot must 

simultaneously explore new landmarks with unknown map 

and search unobservable people. For example, when the 

dynamic features are sheltered by environments and a new 

feature is observable, it is difficult to distinguish a new 

landmark from a dynamic feature. A possible solution for 

such problem is employing multi-hypotheses based 

estimators instead of a single-hypothesis based one.  

 
Fig.4. Thresholds for feature classification in scan association. 

 
Fig.3. Decision flow of landmarks and leg.  



 

 

 

V. THE PROPOSED SAT ALGORITHM CONDITIONED ON 

SLAM 

 
Effective search of sheltered object relies on robust 

localization, mapping, and tracking. To improve prediction 

accuracy, a robot has to move toward the sheltered zone and 

get more object information. This section proposes a scheme 

where the robot can simultaneously localize it, map 

environment features, and SAT a moving object (Fig. 5).  

The SLAMSAT sample set is { }Nimr
i

kkkk ≤≤= 1|,, SX , 

and 
i

kk

i

kOkykxkkrkkykx

i

kkkk UGOOmrrrmr ,,,,,,,,,,, ,,,,,,,, φθ ΣΣ== SX

where kr  is the robot state at time k and km  is the map state 

at time k. Our SLAMSAT factorizes states into goal set 

distribution, object set distribution, robot state distribution, 

and the previous state set distribution as follows.   

(6)                         ).,|,,,(

),,|,(

     ),,,,,|(),|(

),|()(

)(

:1:11:11:11:11:1

ondistributi  

:1:11:1:1

ondistributiset  

:1:1:11:11:1

set  

1

:1:1:1

1

444444 3444444 21

4444 34444 21

444444 3444444 2144 344 21

−

−−−−

−

−−−

×

××

==

kbel

kkkk

i

k

i

k

setRobot

kkkkk

Object

kkkk

i

k

i

k

i

k

ondistributiGoal

i

k

i

k

i

k

DBN

kkkk

zumrGOP

zurmrP

zumrGOOPGOGP

zuPbel

X

XX

           

SAT conditioned on robot position and map is 

)7.(),,,,,|()|(

),,,,,|(

prediction 

1:1:1:1:11:11:1

 

:1:1:1:11:11:1

4444444 34444444 2143421
Object

kkkk

i

k

i

k

i

k

correctionObject

i

k

O

k

kkkk

i

k

i

k

i

k

zumrGOOPOzP

zumrGOOP

−−−

−−

= η
 

 Thus, we simplify (6) to be an EKF localization problem  
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Details of EKF localization can be found in [12]. 
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Our RBPF based SAT algorithm conditioned on SLAM is 

summarized in Table I. The EKF SLAM predicts and 

corrects robot position using EKF (lines 3-10). Laser 

measurements are represented as line features using the least 

square algorithm. The feature is either associated with a 

known landmark (line 7) or a leg feature (line 12). Goal states 
i

kG  are sampled and then the N kinds of object states i

kO  are 

predicted according to (1) (lines 15-16). Based on stream set 

distribution at time 1−k , we assume the distance between 

the object and the goal is fixed at 200 cm so that we only 

randomly sample sink flow direction 
kG ,φ

and sink flow 

intensity
kU for efficiency. If the ith particle is associated 

with a moving object, RBPF will update moving object 

position i

kO . This is described as follows. First, the algorithm 

computes the weighting of the ith particle 
i

kw  and particles 

will be resampled (lines 20-22). In tracking case, the stream 

sample set i

kS  including the object sample set i

kO and the goal 

sample set i

kG  will converge.  In searching case, it will keep 

predict the object sample set i

kO  based on the previous 

stream field i

kS 1−
 

 
Fig. 5. Dynamic Bayesian Networks (DBNs) of SLAMSAT. 



 

 

 

VI. EXPERIMENTAL RESULTS 

We adopt UBOT with one SICK laser as the mobile robot 

platform and a 1.6 GHZ IBM X60 laptop with 0.5G RAM as 

the computing platform. The area of the experimental 

environment is 3.6m by 3.6m. We use PhaseSpace for the 

precise ground truth of people and robot trajectories [13]. 

The LEDs of PhaseSpace are mounted on two legs of the 

people and Ubot (Fig. 6(b)). The people walks along the line, 

and the robot follows the people through the remote control 

(Fig. 6(a)). The person is sheltered by the desk, bookcase and 

chair frequently so that tracking may turn into the searching 

case. 

 
Fig.6. Environment setup: (a) Walking trajectory. (b) The experimental 

environment. 
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Fig.7. (a) Trajectories of KF, PF, RBPF, and ground truth. (b) Errors of KF, 

PF and RBPF. 

 

 

 
Fig.8. The experimental results of SLAMSAT. Small white circles are 

mapped landmarks. Black and black points are static and dynamic features, 

respectively. Black circle and red circle are robot position of odometer and 

estimated robot position of EKF SLAM, respectively. Blue circle is the 

original point. Blue square is the estimated people position of KF. Pink 

circle is the estimated people position of PF. White/Red circle is estimated 

people position of RBPF when it is the searching/tracking case. Red solid 

circle is people goal (sink) position of stream field. Green square is the 

ground truth of people position. (a) 44th frame. (b) 45th frame. (c) 46th frame. 

(d) 47th frame. 

 

The confusion matrices of detection based on AdaBoost 

only and detection based on AdaBoost, scan association and 

data association are presented in Tables II and III, 

respectively. Obviously, scan association and data 

association increase accuracy rate of detection. 

The tracking trajectories are shown in Fig. 7. In searching 

case, KF diverges faster than PF while RBPF keeps 

 
(a)                                                  (b) 

 
(c)                                                  (d) 

TABLE IV.  

Comparisons of tracking errors. 

 Total mean (cm) Total std. (cm) 

KF 107.4 77.59 

PF 94.0 48.39 

RBPF 63.7 26.30 

 

TABLE III.  

Confusion matrix of AdaBoost, scan association and data 

association. 

 Detected Label  

Ground Truth Person No Person Total 

Person 39 (88.8%) 5(11.2%) 44 

No Person 23 (5.9%) 367(94.1%) 390 

TABLE II.  

Confusion matrix of AdaBoost detection. 

 Detected Label  

Groud Truth Person No Person Total 

Person 39 (88.8%) 5(11.2%) 44 

No Person 45 (11.4%) 345 (88.6%) 390 

 

(a)                                         (b) 



 

 

 

predicting the object position based on the stream field. 

Comparisons of average tracking errors among KF, PF, and 

RBPF are shown in Table IV. The average tracking errors of 

KF, PF, and RBPF are 107.4cm, 94.0cm, and 63.7cm, 

respectively.  

 
Fig.9. The experimental results of SLAMSAT with false data association. (a) 

58th frame. (b) 59th frame. (c) 63th frame. (d) 64th frame. 

 

The experimental results of SLAMSAT are shown in Figs. 

8 and 9.  As shown in Figs. 8(a) and 8(b), the KF and PF 

based tracking keep predicting people based on their motion 

model. However, RBPF can further keep searching people 

position based on the virtual goal. Figures 8(c) and 8(d) 

shows the incorrect KF estimation which is resulted from 

false detection. Parts of the PF particles are associated with 

the wall feature while others are not. Accordingly, the people 

position estimated by PF is between those by KF and RBPF. 

Nevertheless, RBPF can still keep searching people position 

based on the virtual goal.  

In Fig. 9, the algorithm will infer that the chair is the 

person if the chair is deemed as leg features and the person is 

out of sight but near the chair. The false alarm of leg 

detection may result in the incorrect estimation of KF and 

RBPF (Fig. 9(a)). Also, the incorrect PF estimation is 

resulted from another false alarm of leg detection. As shown 

in Fig. 9(b), the incorrect estimation of KF and PF are 

resulted from false detection. However, RBPF can still keep 

searching people position based on the virtual goal. In Fig. 

9(c), KF and PF diverge when there is no feature near the last 

estimation. When the leg feature is detected, the estimation 

of the people position by RBPF is near the feature so that 

RBPF can estimate the people position correctly. However, 

the feature position is far from that by KF estimation. Parts of 

PF particles are associated with the leg feature, but others are 

not so that the estimation of PF is inaccurate (Figs. 9(c) and 

9(d)). Obviously, the experimental results show that our 

proposed RBPF algorithm is better than KF and SIR PF in 

the searching and tracking case.   

VII. CONCLUSIONS 

This paper proposes a novel SAT algorithm based on 

stream functions and RBPF conditioned on SLAM called 

SLAMSAT. SLAMSAT estimates the moving object 

position, robot position, and map under sensor uncertainty. 

The experimental results show our algorithm can search and 

track moving objects effectively. 
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