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Abstract— This paper addresses the problem of detecting
people in two dimensional range scans. Previous approaches
have mostly used pre-defined features for the detection and
tracking of people. We propose an approach that utilizes a su-
pervised learning technique to create a classifier that facilitates
the detection of people. In particular, our approach applies
AdaBoost to train a strong classifier from simple features of
groups of neighboring beams corresponding to legs in range
data. Experimental results carried out with laser range data
illustrate the robustness of our approach even in cluttered office
environments.

I. INTRODUCTION

Detecting people is a key capacity for robots that operate
in populated environments. Knowledge about presence, po-
sition, and motion state of people will enable robots to better
understand and anticipate intentions and actions.

In this paper, we consider the problem of people detection
from data acquired with laser range finders. The application
of such sensors for this task has been popular in the past
as they provide a large field of view and, opposed to
vision, are mainly independent from ambient conditions.
However, laser range data contain little information about
people, especially because they typically consist of two-
dimensional range information. Figure 1 shows an example
scan from a cluttered office environment. While this scan was
recorded, several people walked through the office. The scan
suggests that in cluttered environments, people detection in
2D is difficult even for humans. However, at a closer look,
range measurements that correspond to humans have certain
geometrical properties such as size, circularity, convexity or
compactness (see Figure 2). The key idea of this work is to
determine a set of meaningful scalar features that quantify
these properties and to use supervised learning to create
a people detector with the most informative features. In
particular, our approach uses AdaBoost as a method for
selecting the best features and thresholds, while at the same
time creating a classifier using the selected features.

In the past, many researchers focused on the problem of
tracking people in range scans. One of the most popular
approach in this context is to extract legs by the detecting
moving blobs that appear as local minima in the range
image [1], [2], [3], [4]. To this end, two types of features
have been quite popular: motion and geometry features.
Motion in range data is typically identified by subtracting two
subsequent scans. If the robot is moving itself, the scans have
first to be aligned, e.g., using scan matching. The drawback
of motion features is that only moving people can be found.
Topp and Christensen [5] extend the method of Schulz et

Fig. 1. Where are the people? Example scan from a typical office.

al. [4] by the ability to track also people standing still,
which, for instance, is useful for interaction. They report
on good results in typical scenarios but also on problems
in cluttered environments. They also conclude that either
improved motion models or more advanced pattern detection
of people are necessary.

Cui et al. [6] pursue a multi-sensor approach to people
tracking using multiple laser scanners at foot height and a
monocular camera. After registration of the laser data they
extract moving blobs of 15 cm diameter as feet candidates.
Two feet candidates at a distance of less than 50 cm are
treated as a step candidate.

Geometric features have also been used by Xavier et
al. [7]. With a jump distance condition they split the range
image into clusters and apply a set of geometric rules to each
cluster to distinguish between lines, circles and legs. A leg
is defined as a circle with an additional diameter condition.

In all approaches mentioned above, neither the selection of
features nor their thresholds are learned or determined other
than by manual design and hand-tuning. This motivates the
application of a learning technique.

Hähnel et al. [8] have considered the problem of identi-
fying beams in range scans that are reflected by dynamic
objects. They consider the individual beams independently
and apply EM to determine, whether or not a beam has
been reflected by a dynamic object such as a person. Our
method, in contrast, considers groups of beams and classifies



Fig. 2. Typical range readings from legs of people. As can be seen, the
appearance can change drastically, also because the legs cannot always be
separated. Accordingly, the proper classification of such pattern is difficult.

the entire groups according to their properties.
AdaBoost has been successfully used as a Boosting algo-

rithm in different applications for object recognition. Viola
and Jones [9] boost simple features based on grey level
differences to create a fast face classifier using images.
Treptow et al. [10] use the AdaBoost algorithm to track a
ball without color information in the context of RoboCup.
Further, Martı́nez Mozos et al. [11] apply AdaBoost to create
a classifier able to recognize places in 2D maps. They use a
set of geometrical features extracted from range data as input
for the boosting algorithm. Also Rottmann et al. [12] use
geometrical features together with vision features as input
for AdaBoost. The vision features are based on the number
of certain type of objects detected in an image.

Our motivation is the belief that the definition of appro-
priate features for the detection of people in range data has
been underestimated as a problem so far. In the context of
people tracking, the focus has mostly been on the tracking
algorithms rather than on the feature detection problem. We
believe that a more reliable feature detection will ultimately
improve tracking performance.

This paper is organized as follows. After briefly introduc-
ing boosting as a supervised approach for learning a classifier
in the following section, we will discuss the features used
by our approach in Section III. Finally, Section IV contains
the experimental results obtained with the learned classifier.

II. BOOSTING

Boosting is a general method for creating an accurate
strong classifier by combining a set of weak classifiers. The
requirement to each weak classifier is that its accuracy is
better than a random guessing. In this work we use the
AdaBoost algorithm introduced by Freund and Schapire [13].
The input to the algorithm is a set of labeled training data
(en, ln), n = 1, . . . , N , where each en is an example and
ln ∈ {+1,−1} indicates whether en is positive or negative
respectively. In a series of rounds t = 1, . . . , T , the algorithm
selects repeatedly a weak classifier ht(e) using a weight
distribution Dt over the training examples. The selected
weak classifier is expected to have a small classification error
in the weighted training examples. The idea of the algorithm
is to modify the distribution Dt at each round increasing the
weights of the examples which were incorrectly classified
by the previous weak classifier. The final strong classifier H
is a weighted majority vote of the T best weak classifiers.
Large weights are assigned to good weak classifiers whereas
poor ones receive small weights.

Throughout this work we use the approach presented by
Viola and Jones [9] in which the weak classifiers depend on

TABLE I
THE GENERALIZED ADABOOST ALGORITHM

• Input: Set of examples (e1, l1), . . . , (eN , lN ), where ln = +1 for
positive examples and ln = −1 for negative examples.

• Initialize weights D1(n) = 1
2a

for ln = +1 and D1(n) = 1
2b

for
ln = −1, where a and b are the number of positive and negative
examples respectively.

• For t = 1, . . . , T :

1) Normalize the weights: Dt(n) =
Dt(n)∑N

i=1
Dt(i)

.

2) For each feature fj train a weak classifier hj using Dt.
3) For each hj calculate: rj =

∑N

n=1
Dt(n)lnhj(en),

where hj(en) ∈ {+1,−1}.
4) Choose hj that maximizes |rj | and set (ht, rt) = (hj , rj).
5) Update the weights: Dt+1(n) = Dt(n) exp(−αtlnht(en)),

where αt = 1
2

log( 1+rt
1−rt

).

• The final strong classifier is given by: H(e) = sign(F (e)),
where F (e) =

∑T

t=1
αtht(e).

single-valued features fj and have the form

hj(e) =
{

+1 if pjfj(e) < pjθj

−1 otherwise, (1)

where θj is a threshold and pj is either +1 or −1 and thus
represents the direction of the inequality. In each round t
of the algorithm, the values for θj and pj are learned, so
that the misclassification in the weighted training examples
is minimized [11]. The final AdaBoost algorithm modified
for the concrete task of this work is shown in Table I.

III. FEATURE DEFINITIONS

In this section we describe the segmentation method and
the features used in our system. We assume that the robot
is equipped with a range sensor that delivers observations
Z = {b1, ..., bL} that consist of a set of beams. Each beam
bj corresponds to a tuple (φj , ρj), where φj is the angle of
the beam relative to the robot and ρj is the length of the
beam.

The beams in the scan Z are split into subsets of beams
based on a segmentation algorithm. In our current system, we
use a jump distance condition to compute the segmentation:
If two adjacent beams are farther away than a threshold
distance, a new subset is initialized. Although one could
easily imagine more complex or adaptive thresholds (see the
work by Premebida and Nunes [14] for an overview), we
found in our experiments that the jump distance condition
yields segmentations that can readily be processed by the
subsequent learning step.

The output of the partitioning procedure is an ordered se-
quence P = {S1, S2, ..., SM} of segments such that

⋃
Si =

Z. The elements of each segment S = {x1,x2, ...,xn}
are represented by Cartesian coordinates x = (x, y), where
x = ρ cos(φ) and y = ρ sin(φ), and (φ, ρ) are the polar
coordinates of the corresponding beam.

The training examples for the AdaBoost algorithm are
given by a set of segments together with their labels

E = {(Si, li) | li ∈ {+1,−1}} ,



where li = +1 indicates that the segment Si is a positive
example and li = −1 indicates that the segment Si is a
negative example. Note that the standard AdaBoost algorithm
is a binary classifier only. In situations, in which there are
different objects to be classified, one could learn decision
lists as successfully applied by Martı́nez Mozos et al. [11]
in the context of place labeling with mobile robots.

We define a feature f as a function f : S → < that takes
a segment S as an argument and returns a real value. Here,
S is the set of all possible segments. For each segment Si

we determine the following fourteen features:
1) Number of points: n = |Si|.
2) Standard deviation: This feature is given by

σ =
√

1
n− 1

∑
j

||xj − x̄||2,

where x̄ denotes the center of gravity of a segment Si.
3) Mean average deviation from median: This feature is

designed to measure the segment compactness more
robustly than the standard deviation. The median of
a distribution f(x) is the value where the cumulative
distribution function F (x) = 1/2. Given an ordered
set of K scalar random samples xi the median x̃ is
defined as

x̃ =
{

x(K+1)/2 if K is odd
1
2 (xK/2 + xK/2+1) if K is even

Opposed to the mean, the median is less sensitive to
outliers. In our multi-dimensional case, we calculate
x̃ using the vector-of-medians approach [15], i.e. x̃ =
(x̃, ỹ). The average deviation from the median is then

ς =
1
n

∑
j

||xj − x̃||

4) Jump distance from preceeding segment: This feature
corresponds to the Euclidian distance between the first
point of Si and the last point of Si−1.

5) Jump distance to succeeding segment: The Euclidian
distance between the last point of Si and the first point
of Si+1.

6) Width: This feature measures the Euclidian distance
between the first and last point of a segment.

7) Linearity: This feature measures the straightness of
the segment and corresponds to the residual sum of
squares to a line fitted into the segment in the least
squares sense. Given the segment points in polar
coordinates xi = (φ, ρ), fitting a line in the Hessian
(α, r)-representation that minimizes perpendicular er-
rors from the points onto the line has a closed form
solution. We use the (unweighted) expressions from
[16]. Once the line parameters (α, r) are found, the
residual sum of squares is calculated as

sl =
∑

j

(xjcos(α) + yjsin(α)− r)2,

where xj = ρjcos(φj) and yj = ρjsin(φj).

8) Circularity: This feature measures the circularity of
a segment. Like for the previous feature, we sum up
the squared residuals to a fitted circle. Given a set of
points in Cartesian coordinates, an elegant and fast way
to find the best circle in the least squares sense is to
parameterize the problem by the vector of unknowns
as x = (xc yc x2

c + x2
c − r2

c )T where xc, yc and
rc denote the circle center and radius. With this, the
overdetermined equation system A · x = b can be
established,

A =


−2x1 −2y1 1
−2x2 −2y2 1

...
...

...
−2xn −2yn 1

 b =


−x2

1 − y2
1

−x2
2 − y2

2
...

−x2
n − y2

n


and solved using the pseudo-inverse

x = (AT A)−1AT · b.

The residual sum of squares is then

sc =
n∑

i=1

(rc −
√

(xc − xi)2 + (yc − yi)2)2.

This parameterization of the least squares problem has
better geometric properties than the approach used by
Song et al. [17]. When geometry plays a role in fitting
(opposed, e.g., to regression in statistics), care has to
be taken what errors are minimized. Otherwise alge-
braically correct but geometrical useless least squares
fits can be the result.

9) Radius: This feature is the radius rc of the circle fitted
to the segment. It corresponds to an alternative measure
of the size of a segment Si.

10) Boundary length: This feature measures the length

l =
∑

j

dj,j−1

of the poly-line corresponding to the segment, where
dj,j−1 = ‖xj − xj−1‖ is the distance between two
adjacent points in the segment.

11) Boundary regularity: Here we calculate the standard
deviation of the distances dj,j−1 of adjacent points in
a segment.

12) Mean curvature: The average curvature k̄ =
∑

k̂j

over the segment Si is calculated using the following
curvature approximation. Given a succession of three
points xA, xB, and xC, let A denote the area of the
triangle xAxBxC and dA, dB , dC the three distances
between the points. Then, an approximation of the
discrete curvature of the boundary at xB is given by

k̂ =
4A

dAdBdC
.

This is an alternative measurement of rc as curvature
and radius are inverse proportional.
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Fig. 3. Laser segment with its feature profile. The highlighted points
correspond to the segment and the crosses depicts other readings in the
scan. The circle and line are fitted to the segment for the linearity and
circularity features.

13) Mean angular difference: This feature traverses the
boundary and calculates the average of the angles βj

between the vectors xj−1xj and xjxj+1 where

βj = 6 (xj−1xj ,xjxj+1).

Care has to be taken that angle differences are properly
unwrapped. This features is a measure of the convex-
ity/concavity of segment Si.

14) Mean speed: Given two scans with their associated
timestamps Tk, Tk+1, this feature determines the speed
vj for each segment point along its beam,

vj =
ρk+1

j − ρk
j

Tk+1 − Tk
,

and averages over all beams in the segment. ρk
j and

ρk+1
j are the range values of beam j at times k and

k + 1.

This collection of features constitutes a profile of each
segment (see Figure 3). Since certain features are not defined
for less than three points (e.g., circularity, radius) only
segments with n > 2 points are taken into account.

Some papers [1], [6], [5] report the use of additional
conditions on the distance between blobs, typically to as-
sociate two legs to the same person. We deliberately do not
consider such conditions. The association of single legs to
persons, especially when several people stand close together,
is a complex data association problem. In our opinion, this
problem can more robustly be solved by integrating multiple
observations over time rather than directly on the level of
the feature detector.

Fig. 4. The corridor (left) and office (right) environments in which the
experiments were carried out.

IV. EXPERIMENTS

The approach presented above has been implemented
using a 180 degree SICK laser range finder. The goal of the
experiments is to demonstrate that our simple features can
be boosted to a robust classifier for the detection of people.
Throughout the experiments, the sensor was kept stationary
and mounted 30 cm above the floor. The corresponding scans
where segmented and the features described in Section III
were calculated for each segment. The complete set of
labeled segments was then divided randomly into a training
and a test set, each containing approximately 50% of the
segments. The training sets were employed for learning a
strong classifier using AdaBoost, whereas the test set was
used for the evaluations. The segments in the test sets were
labeled manually as person or non-person. With the help
of videos recorded during the experiment, the ground truth
could be properly identified.

We first demonstrate how our classifier can be learned
to detect people in two different environments, namely a
corridor and an office. Additionally we analyze whether a
common classifier can be used in both environments. Further
we show how a classifier can be used to classify people
in environments for which no training data were available.
We also compare our results with the ones obtained using a
heuristic approach which uses features frequently found in
the literature about laser-based people tracking. In all these
experiments we applied features #1 to #13 from Section III.
In a final experiment we repeat the training and classification
steps using also the motion feature #14.

One important parameter of the AdaBoost algorithm is the
number of weak classifiers T used to form the final strong
classifier. We performed several experiments with different
values for T and we found that T = 10 weak classifiers
provide the best trade-off between the error rate of the
classifier and the computational cost of the algorithm.

A. Corridor and Office Environments

In the first experiment we recorded a total of 540 scans in a
corridor while a person was both moving and standing still
(Figure 4 left). Each scan was divided into segments and
for each segment features #1 to #13 were calculated. The
total number of segments extracted was 5734. After dividing
the segments into a training and a test set, we trained our
AdaBoost classifier. The results from the test set are shown in
Table II. Only 1 from 240 segments (0.42%) corresponding



TABLE II
CONFUSION MATRIX FOR THE CORRIDOR ENVIRONMENT

Detected Label
True Label Person No Person Total

Person 239 (99.58%) 1 (0.42%) 240
No Person 27 (1.03%) 2589 (98.97%) 2616

TABLE III
CONFUSION MATRIX FOR THE OFFICE ENVIRONMENT

Detected Label
True Label Person No Person Total

Person 497 (97.45%) 13 (2.55%) 510
No Person 171 ( 2.73%) 6073 (96.26%) 6244

to people was misclassified (false negatives), whereas 27
from 2589 segments (1.03%) not corresponding to a person
were classified as people (false positives). These results show
that our algorithm can detect people with high accuracy.

In a second experiment we placed the laser in an office that
contained tables, chairs, boxes, round shaped trash bins, and
other furniture, creating a cluttered environment. Figure 4
(right) shows a picture and Figure 1 depicts a scan taken
in this office. Two people were in the room during the
experiment. Like in the previous experiment, the people were
moving and occasionally standing still. A total of 791 scans
were recorded from which we extracted 13838 segments.
The segments were divided into a training and a test set
and a strong classifier was learned. Although the office was
cluttered with objects and furniture that strongly resemble
features of legs, we still obtained an overall classification
rate of 97.25%. The confusion matrix is shown in Table III.

In a third experiment we created a common set of seg-
ments containing all the segments from both the corridor
and the office environment. Again, the set was divided into
a training and a test set. Table IV shows the confusion matrix.
Although the error rates slightly increase with respect to
Tables II and III, they still remain under 4%, which in our
opinion is a fairly good level. This result demonstrates that
a common classifier can be learned using both environments
while still obtaining good classification rates.

B. Transferring the Classifiers to New Environments

The following experiment was designed to analyze
whether a classifier learned in a particular environment can
be used to successfully detect people in a new environment.
To carry out this experiment we trained AdaBoost using the
training set from the office environment. We then classified
the test set from the corridor scenario. Table V shows the
results of this classification. As expected, the errors increase
compared to the situation in which the training and the test
data were from the same domain. Even in this case, the
classification rates remain above 90%. This indicates that
our algorithm yields good generalizations and can also be
employed for people detection in new environments.

C. Comparison With a Heuristic Approach

To analyze how much can be gained by our learning
approach we compared the classification results of our

TABLE IV
CONFUSION MATRIX FOR BOTH ENVIRONMENTS

Detected Label
True Label Person No Person Total

Person 722 (96.27%) 28 (3.73%) 750
No Person 225 (2.54%) 8649 (99.88%) 8860

TABLE V
RESULTS OBTAINED IN THE CORRIDOR ENVIRONMENT USING THE

CLASSIFIER LEARNED IN THE OFFICE

Detected Label
True Label Person No Person Total

Person 217 (90.42%) 23 (9.58%) 240
No Person 112 (4.28%) 2504 (95.72%) 2616

AdaBoost-based classifier with the results obtained using a
manually designed classifier that employs features frequently
found in the literature about laser-based people tracking. This
classifier uses the following list of features and thresholds:

• Jump distance between adjacent beams for local minima
extraction (features #4 and #5). The threshold for both
features has been set to 30 cm.

• Segment width (feature #6). The corresponding thresh-
olds derive from the task: Local minima blobs greater
than 5 cm and smaller than 50 cm are accepted.

• Minimum number of points (feature #1). Segment with
fewer than four points are discarded.

• Motion of beams (feature #14). Two consecutive scans
are aligned and beam-wise subtracted from each other.
Segments that contain beams which moved more than a
certain distance are classified as people. This minimal
distance was set to 2 cm, close above sensor noise.

• Standard deviation as a compactness measure of a
segment (feature #2). The threshold was experimentally
determined and set to 0.5 meter.

For this experiment we use the test set of the experiment
explained is Section IV-A where segments from the corridor
and office were used together as examples. The results of the
classification are shown in Table VII. As the results indicate,
our approach yields much better results than the heuristic
approach.

D. Adding the Motion Feature

In the previous experiments, only the first thirteen ge-
ometrical features were used. We additionally performed
experiments after we added the motion feature #14. All scans
from the corridor and the office runs were used for training
and classification. The results are contained in Table VIII.
As can be seen, there is only a marginal improvement
over the classifier without the motion feature (Table IV).
Although the motion feature receives relatively high weight
(it is ranked as the third most informative feature), this
marginal improvement is simply an expression of the fact
that people do not always move. People should be and – as
this experiment demonstrates – can be detected without the
use of motion information.



TABLE VI
THE BEST FIVE FEATURES FOR EACH CLASSIFIER

Environment Five Best Features
Corridor 9, 4, 5, 2, 4
Office 9, 13, 3, 4, 5
Both 9, 13, 4, 3, 5

TABLE VII
COMPARISON WITH THE HEURISTIC APPROACH

Heuristic Approach AdaBoost
False Negatives (%) 34.67 3.73
False Positives (%) 9.06 2.54
Overall Error (%) 11.06 2.63

E. Best Features for People Detection

As we use AdaBoost here as an offline method, that
is, a technique that is run once and not on-the-fly on the
robot, the question is: What are the best features for people
detection in range data? The answer can be obtained from
the importance of the individual feature weights in the final
strong classifier. Table VI lists the five best features for each
AdaBoost classifier trained in the corridor, office and both
environments respectively. Note that sometimes the same
features occurs more than once in a classifier. In this case,
they differ in their threshold and/or weight values.

It is interesting to interpret this outcome: The most in-
formative feature is the radius of the circle fitted into the
segment (feature #9). Note that this feature does not measure
the degree of circularity (as feature #8) but is an alternative
size estimate, apparently better than feature #6 (width). The
mean angular difference (feature #3) is the second most
important feature and quantifies the convexity of the segment.
It is followed by the two jump distances (features #4 and #5)
that we already know as the most popular detection features
for local minima. Finally there are features #2 and #3 that
both measure the compactness of the segment where feature
#3 seems to be preferred. The reason for this is likely to be
the more robust properties of the mean absolute deviation
from the median over the simple standard deviation.

V. CONCLUSIONS

This paper addressed the problem of detecting people
in laser range data. In contrast to previous approaches,
which mostly used manually designed features, our approach
applies the AdaBoost algorithm to learn a robust classifier.
This classifier is learned from simple features and identifies
groups of beams that correspond to legs of people. The
method has been implemented and applied in cluttered
office environments. In practical experiments carried out in
different environments we obtained encouraging detection
rates of over 90%.

From the features selected by AdaBoost we can conclude
that the shape of people in range data is best recognized by a
radius feature, a convexity feature, a local minimum feature
and a robust compactness feature (see Table VI).

In future work we plan to investigate how typical state es-
timation tasks like people tracking and mapping in dynamic
environments can be improved using our robust classifier.

TABLE VIII
CLASSIFICATION ERRORS AFTER ADDING THE MOTION FEATURE

Without Motion Feature With Motion Feature
False Negatives (%) 3.73 3.47
False Positives (%) 2.54 3.13

Total Error (%) 2.63 3.15
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