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Abstract

This paper describes the new localisation algorithms un-
der implementation for the mail distributing mobile robot,
MOPS, of the Institute of Robotics, Swiss Federal Institute
of Technology Zurich. Using geometric primitives as fea-
tures, we employ consistent probabilistic feature extrac-
tion, clustering, matching and estimation of the vehicle
position and orientation. The extracted features and their
first-order covariance estimates are used, together with a
world model, by an extended Kalman filter so as to get an
optimal estimate of MOPS’ current pose vector and the as-
sociated uncertainty. The line extraction consists of an in-
itial segmentation, based on a feature-independent
compactness measure in the model space, and a subse-
quent probabilistic clustering step. This yields a highly ac-
curate and efficient localisation.

1. Introduction

The Mobile Post System (MOPS), see figure 1, is a
wheeled mobile robot employed to distribute mail in a new
building at the Swiss Federal Institute of Technology in
Ziirich. An important aspect of this application is that
MOPS operates in a standard office environment. A gener-
al overview of the system and the task can be found in [1].

A critical factor influencing MOPS’ ability to solve the
mail distribution tasks is his knowledge, at all times, of the
instantaneous position and orientation within the building.
Should such information not be available to the rest of
MOPS’ control system it would not be possible to distrib-
ute mail. In this paper we will describe recent major im-
provements to the localisation sub-system of MOPS’
control software.

In section “Robot System” we describe the complete ro-
bot system being used for the mail distribution application.
In particular we will describe the new sensor system. To
enable MOPS to manipulate the mail, a 3-dof mechanism
is mounted on top of the mobile platform. The whole sys-
tem is modular; the manipulator can be replaced with an-
other module to fulfil other service tasks in an office
building than mail distribution.
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Figure 1: The MObile Post System MOPS. The upper pari
of the system constitutes a 3-DOF manipulator / storage
mechanism for two mail boxes. The lower part is a
MECOS mobile robot platform equipped with two laser
scanners, 12 ultrasound sensors, 2 triangulation sensors,
a tactile bumper, infrared communication system, wireless
modem, speech output system and a VME-based multi-
processing robot controller for 6 servo axis (2 used for
propulsion, 3 for manipulation, 1 spare).

Since we are using a method based on feature matching (a
feature is typically a wall, a corner, a cylinder or a distinc-
tive point somewhere in the environment) we will enter
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into the details of the feature extraction performed on the
robots extroperceptive sensor data in the chapter “Probabi-
listic Feature Extraction”. The extracted features are later
on used to localize the robot with the assistance of an ex-
tended Kalman filter and an on-board object-based map of
MOPS’ environment.

2. Robot System

For the task described above a non-holonomic mobile ro-
bot platform with two diametrically opposed drive wheels
and a free-wheeling castor (the same kinematics as the ro-
bot Newt, as described in [2]) is being used, see figure 1.
The two drive wheels are located at one end (the front end)
of the vehicle, and the support castor at the other end.

The basic platform contains a multi-processing controller
for servo motors (DC, EC or AC) based around the VME
bus, currently the robot is equipped with one 200 MHz
PowerPC 604 processing board (previously a dual proces-
sor 68040 system was used). The drive wheels constitutes
two servo axis, and the remaining 4 axis are consequently
available for a manipulating mechanism. Such a mecha-
nism has been integrated on top of the platform. The pro-
gramming is done in the object-oriented real-time
development environment XOberon for general, high-per-
formance mechatronic systems [3].

The basic robot platform is equipped with two scanning
laser range-finders (front, rear), twelve ultrasonic range
finders, and a bumper system with six segments. A radio
modem enables wireless communication and various indi-
cator lights and speech output module informs the environ-
ment about the robots immediate action. An infra-red
communication system is used to communicate with the
building infra-structure (elevator, pigeon hole blinds, etc.).

Recently the laser range finders has been upgraded to the
latest model, the LMS200 from the company SICK [4].
This laser range finder is based on a time-of-flight principle
and therefore delivers range data of exceptional linearity.
The scanning mechanism of the sensor allows a polar range
image to be generated between 0 and 180 degrees with a
maximum angular resolution of 0.25°. Recording one com-
plete scan takes only a few tens of milliseconds (mirror ve-
locity 483 or 118 radians/s depending on angular
resolution), and due to its high bandwidth serial communi-
cation interface all the data can be transferred to MOPS’
navigation computer in real-time. The radial resolution of
the sensor system is 10 mm. The maximum range of the
sensor is configurable, in this application a maximum
range of 8 m is used.

In addition to providing range data the sensor can also de-
tect retro-reflective beacons. The detection of reflective
beacons is done simultaneously with the range measure-
ment and the information on the presence/absence of bea-
cons is transmitted as intensity information with the range
data. There is no difference in range noise between meas-

urements lying on such beacons and range measurement on
normal surfaces. The beacons can be standard reflective
foils such as 3M Scotchlite Diamond Grade. Reliable de-
tection of reflective beacons can be achieved on the range
interval of 1 to 3 metres.

3. Probabilistic Feature Extraction

In order to achieve high estimation accuracy, consistent
propagation of the first and second moments from single
range reading to all system stages involved in the position
estimation is essential. Extraction of geometrical primi-
tives from noisy 1D range data has to furnish the first two
moments of the model parameter estimates. A Kalman fil-
ter for extraction provides this [10], [14], but includes the
problem of initialising the filter each time a new feature
segment is detected. By working on polar co-ordinates, and
not with an intermediate Cartesian representation {15], it is
directly possible the determine the first-order covariance
estimate.

Using the range and angular information (p and 0) as well
as the intensity information from the robots laser range
finders we extract the Cartesian co-ordinates of the beacons
and the parameters (r and o) of the line model in eq. (1).

pcos(@-a)—r = 0 ¢

3.1 Estimating a line and its covariance matrix
using polar co-ordinates

Feature extraction can be subdivided into two questions:
a) which of the range measurements in the range image are
generated by the sought structure in the environment (seg-
mentation), and b) how do these points contribute to the es-
timation of the model parameters and their covariance
matrix (model fit).

The answer to question b) is, in our case, the estimation of
the line parameters @, r in the general least squares sense
using polar co-ordinates minimising the perpendicular dis-
tance from the points to the line. It can be shown that the
solution is as given in eq. (2) and eq. (3).
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Where p; is the range value of a single measurement, 6; its
angle and w; the associated weight. Instead of implement-
ing eq. (2) and (3) directly, we choose to use its identical
weighted Cartesian form which is clearly more efficient.
See also [5].

However, if we want to determine the covariance matrix

tan2¢o =
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we need to know eq. (2) and (3). By writing the model pa-
rameters as random variables represented by their first-or-
der Taylor series expansion about the mean point and
assuming independence of radial and angular noise, the
first-order covariance estimate is given in eq. (4).

T
Cl = mpecpempe (4)

Where myq is the Jacobian matrix containing all partial
derivatives of the model parameters with respect to all
measurements r and q involved in the estimation.

The weights can be chosen as the inverse of the variances
giving most weight to data points with low variability. By
measuring the signal strength of the reflected beam know-
ing its relation to the variance of radial noise, one can de-
termine a weight for each range reading. However not all
commercially available laser scanners provide this infor-
mation. In this case the relationship of range variance to
distance can be experimentally identified. It is obvious that
all other sources which influence range variance (surface
properties or beam splitting) are no longer taken into ac-
count.

Question a) is a segmentation problem. In this work we
employ a probabilistic feature-independent fidelity criteri-
on in the model space and a subsequent clustering step.

The model is fitted into n,neighbouring points and the co-
variance matrix is computed. This is done for all points of
the scan obtaining the same number of spatially diffused
Gaussian distributions in the model space. When adjacent
groups of range readings lie on the same landmark, their as-
sociated points constitute a cluster of these distributions in
the model space corresponding to that landmark. Feature
extraction is now the task of finding these clusters. In a
general case a clustering problem of this size where no a
priori knowledge is available would lead to impracticably
high computation times under real time conditions. Here
the fact can be exploited that points on the same landmark
are almost always consecutive points. Due to this underly-
ing regularity in the acquisition process, a compactness
measure in the model space, c;, is defined according to
eq. (5) and applied to n,, adjacent points.

= B0y n € ey ayn) O

Wherej=i-(n,~1)/2,..,i+(n,—1)/2and x,, is the
weighted mean and C,, its covariance matrix, see eq. (7)
and (8) of section 3.3.

Low distance indicates that the points involved have high
model fidelity. If ¢; is plotted against the measurement in-
dex for all i, regions of low value can be expected at the
corresponding index places of the sought clusters. A
threshold c,,, found by deciding on the appropriate distri-
bution of ¢, is applied cutting off the regions of low dis-
tance. A contributing segment is now defined to be the set
of measurement points those representations in the model
space satisfy ¢; < ¢,

3.2 Clustering

After the completion of this step there will be, in general,
more than one segment corresponding to one single land-
mark. We have an oversegmented range image. Associat-
ing these segments with each other is done in a clustering
step. Otherwise valuable information would be lost, for ex-
ample in a matching procedure of a Kalman filter-based lo-
calization task, where only the observed segment which is
closest to the prediction will be considered, whereas the
others belonging to the same landmark would be ignored.
On the other hand, two landmarks which differ only slight-
ly in one or more of their model parameters, should be
identified as being distinct within the limits which are giv-
en by sensor noise.

The matching problem, i.e. finding correspondence of ob-
jects represented by randomly distributed vectors in some
model space, also called data or measurement association,
arises, e.g., in the target tracking domain [6]. The goal is to
produce an assignment from a measurement to a predicted
target in the presence of clutter causing false measure-
ments. A validation region around the prediction in the
model space is used to discard or confirm a measurement.
When dealing with multiple targets or clutter its likely that
a measurement falls in two validation regions or several
measurements lie in a single validation region requiring
more complex association concepts. In mobile robotics this
problem arises not only if the Kalman filter is employed for
localization [7] but generally when dealing with uncertain
spatial information [8], [9], e.g., when matching features in
visual images [10], [11]. However, opposed to this prob-
lem, it is always a pairwise correspondence which is
sought, and not the unsupervised assignment of multiple
estimates to an unknown reference.

Clustering techniques provide this treatment of data, and
having gained a number of segments like previously ex-
plained or any other scheme providing propagation of the
first two moments, the number of points in the model space
has been significantly reduced. Starting from n, where n
can be large, just the number of segments, n;, remain.
Hence, from the viewpoint of clustering techniques, seg-
mentation can be perceived as being a preprocessing step in
order to reduce input information leading to small clusters
at the same locations where the original clusters have been
observed before. An agglomerative hierarchical clustering
algorithm [12] which permits an efficient implementation
is utilized and due to its simplicity a short outline is given:

Having computed the n, X n, symmetric distance matrix
D, the procedure starts with each point as a separate cluster.

* Find the minimal distance d,«j of clusters Q; and Q;inD

and while d;; < d,, proceed to

* Merge Q; and Q; obtaining Q;; The number of clusters

is decreased by one.

* Update D by calculating the new distances from Q;; to

all other clusters. Only one column and row is changed.
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Then go back to the first step

The problem of determining the distance between two
clusters is not straightforward and there are several propo-
sitions for its solution. Often it remains a matter of specific
experimentation to select the most appropriate method.
However, with the covariance estimates, there is additional
information on the cluster elements available which can be
exploited for eliminating the usual ambiguities. One needs
not to deal with clusters consisting in more than one ele-
ment since in the merging step, two distributions are in-
stantly fused by making a new model fit with the combined
set of measurements in the image space. Hence, the dis-
tance between two clusters is always the distance of two
normally distributed vectors in the model space and we can
refer back to the matching problem where the Mahalanobis
distance, see eq. (6), is widely employed for that purpose.

d; = (x-x)"(C;+ €))7 (x;-x)) (6)

If x; and x; belong to the same landmark, d;? has chi-
square distribution and an appropriate threshold must be
chosen. It is interesting to note that if the points in the mod-
el space were truly normally distributed and therefore com-
pletely described by the first two moments, merging could
be efficiently done with eq. (7) and (8) without leaving the
model space. Experiments showed, however, that iterated
fusion leads to accumulating deviations from the (true) fit
alternative, which for large structures where many seg-
ments have been merged, became non-negligible.

The final estimates of the parameters are directly availa-
ble after exiting the clustering algorithm. The final seg-
ments are obtained by combining measurement points of
adjacent segments if they belong to the same line.

3.3 Probabilistic Beacon Extraction

By using the intensity information of the LMS200, the
segmentation problem for the beacons is already solved.

In general, several measurement points lie on a retro-re-
flective beacon and the issue of observational uncertainty
is addressed in the same way as for measurement points not
lying on a retro reflector: the radial noise is assumed to be
given in relationship to the distance and the angular uncer-
tainty is assumed to be zero. The overall variability in radi-
al direction is thus the weighted mean as found through
eq. (7) and eq. (8).

x, = C,3.C 'y, @)

¢, =Yc¢! (8)

Where x; is a (scalar) range reading and C; is the (scalar)
covariance estimate of range reading i.

The angular beacon location uncertainty is estimated ac-
cording to the ad-hoc assumption that the centre of the bea-
con is within the angular interval spanned by the reflector

range readings and the two adjacent points with a 99%
probability. With A8 as the angular resolution, n, repre-
senting the number of measurement points on the beacon
and assuming Gaussian distributions, the mean and the var-
iance of the angle is given as in eq. (9) and (10).

1
Opo = a_o;gAe(nb"' 1) )]

1
Hpg = n_bzebi (10

Further, assuming independence of radial and angular er-
rors we find the beacon location and covariance as by
eq. (11), (12) and (13).

2.
Hpp = (Eobpi %) Zpbi/cbpi2 1)
1
Hpg = n_bzebi (12)
_9.-1
(Y04 0

C, = 1 ) (13)

0 (—-Ae(n,,+ 1))
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4. Hybrid Position Estimation

In this section we describe how to use the extracted lines,
their covariance estimates, and beacons for the task of ac-
curately calculating MOPS’ Cartesian position in the glo-
bal reference frame.

Consider a localization scheme which relies on an extend-
ed Kalman filter to estimate the vehicles pose vector
x(k) = [x(k) y(k) w(k)] and the corresponding covariance
estimate P(k). We can then use the result of [6] that the Kal-
man filter gain can be written as in eq. (14)

Wk+1) = P(k+11k)H S (k+1) (14)
which allows us to compute the updated position estimate
asineq. (15)
Xk+1|k+1) = 2(k+ 1)+ Wk + D)v(k+1) (15)
With a variance of the position estimate as in eq. (16).

Pk+1lk+1) = (16)
Plk+ 1)-W(k+1)S(k+ l)WT(k +1)

The above notation corresponds to what was used in [7].

The innovations v;(k+1) is contained in the innovations

vector v(k+1) and are the differences between the observed

model parameter vectors, m;(k+1), and their predictions,
m (k+1), both in the sensor coordinate system, eq. (17).

vik+1) = mk+1)—mk+1) 17

The innovation covariance matrices, given in eq. (18),
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quantify the error propagation from the position and orien-
tation uncertainty to the target prediction # ,(k+1) and add
to that the feature specific observational uncertainty C,,; of
each observed target.

S(k+1) = HPKk+1|0H +C,, (18)

In eq. (18) the matrix H; denotes the linearised measure-
ment model 57 (), for lines, and Sh »(.) for beacons, see
also eq. (19) (for lines) and eq. (20) (for beacons).

Stk + 1) = h"my, 3k + 1]k)) (19)
Stk +1) = hyWmy, 2(k +1]k)) (20)

The operation performed in eq. (19) and (20) is equivalent
to a coordinate system transformation world-to-sensor for
the model parameters W,

The innovations are obtained by matching observations to
predicted targets. The matching criterion is given as ellip-
tical validation regions in eq. (21).

vilk+ D)8 (k+ Dyt + DT <x2 Q1)

Similar to previous work on this topic, [7], we only accept
a match when a single observation falls into a single vali-
dation region. Experiments with our mobile robot plat-
forms performing real-time localization while moving (see
also next section) showed that such simple and conserva-
tive matching strategy is sufficient even in complex real-
world environments under the conditions that the localisa-
tion cycle is fast and that the feature extraction is precise. It
is important to note that this matching is done in the un-
modified model space, i.e. only with r and &, opposed to
the more unreliable matching of single segments. This map
organisation and matching strategy is motivated by the sub-
sequent clustering which is part of the extraction process.

5. Implementation and Results

In this section we will present extraction results based on
scans from the Acuity AccuRange3000LYV. The sensor was
configured to have a medium angular resolution of nearly
1° on 360° and is of relative low quality (figure 2 and
figure 3). Currently the algorithms are being implemented
on the MOPS system with the LMS200 sensors.

Each measurement receives a standard deviation based on
a linear relationship to the distance, indicated by 4G—inter-
vals. Experiments with two other commercially available
laser scanners (Leuze RS3 and SICK PLS100) showed that
it is not crucial for the performance of the extraction to
have elaborated sensor models for the range variances [5].

The localization was performed by a robot system with a
68020 CPU running at 20MHz equipped with a Leuze RS3.
Its implementation is reduced such that only the first statis-
tical moments are propagated. For all distance measures
their Euclidian equivalents have been taken, the thresholds

) -4 -2 0 2 4
x[m]

Figure 2: 360°-scan of the Acuity AccuRange3000 LV. A
scan with medium angular resolution while radial noise is
relatively large. The simulated standard deviations are
indicated by 46-intervals.

6F T T

y[m]

-2
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Figure 3: (a) Ext-
racted lines after the
agglomerative hierar-
chical clustering. Cor-
ners which are found
according  to  the
scheme in [5] are
depicted by crosses and ]
their  99%  error B B e
ellipse. (b) Detail from

(a). Corner probabilities are diffused in direction of the
walls which is to be expected with perpendicular corners.

(b)

were informally determined. The overall performance es-
pecially with respect to robustness against outliers and dis-
crimination property in the clustering step is clearly
inferior compared to the presented probabilistic version.
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Due to this, a preprocessing which eliminates spurious
points and thins out the raw range data became necessary.

Firstly the extraction accuracy for lines was identified.
The robot was put into a corner about two meters away
from a metal cupboard and a large cardboard box, where
300 extractions were made. The hit rate was 100%, the
standard deviation in r was found to be 5 mm, standard de-
viation in & was 0.2°. Computation time including preproc-
essing was not greater than 240 ms. Then the extraction
was used for a map-based localization task with an extend-
ed Kalman filter, solely relying on the line extraction. Po-
sition update while moving is accomplished through a good
interplay with the underlying position controller for non-
holonomic kinematic configurations [13]. The robot can be
manually pushed away from its given trajectory to which it
responds with smoothly returning to its path within a few
position update cycles. The localization accuracy which
was immediately obtained without further optimization of
any vehicle parameters was below one centimetre when the
robot positioned itself at a desired location. As a further es-
timate for its precision, the noise of the position estimates
has been identified when the robot was stationary. Standard
deviation in x and y was found to be 6 mm, standard devi-
ation in © was 0.05°, The average localization cycle time
during a journey through lab and corridors was 445 ms.

Recent experiments on the current MOPS hardware leads
to expect that this over all processing time will be lower by
a factor of 50 (i.e. around 10 ms).

6. Conclusions and Future Work

This paper has described the new localisation algorithms
being implemented on the MOPS for its task of distributing
the mail.

We have shown that the system has a highly accurate lo-
calisation system, which in turn enables the robot to “dock
onto” the pigeon holes and to load/unload boxes of mail.
Furthermore the position update process is tolerant towards
unmodelled obstacles and it is also fast enough for utilisa-
tion in the real world.

Currently the system relies upon an a-priori map. Investi-
gations are being undertaken with the goal of eliminating
this costly, and unnecessary step.

The use of a vision system for the recognition of “impor-
tant” scenes, e.g. for reading the room numbers, is also be-
ing examined.
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