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Abstract
In this paper a multisensor setup for localization consisting
of a 360 degree laser range finder and a monocular vision
system is presented. Its practicability under conditions of
continuous localization during motion in real-time (re-
ferred to as on-the-fly localization) is investigated in large-
scale experiments. The features in use are infinite horizon-
tal lines for the laser and vertical lines for the camera pro-
viding an extremely compact environment representation.
They are extracted using physically well-grounded models
for all sensors and passed to the Kalman filter for fusion
and position estimation. Very high localization precision is
obtained in general. The vision information has been found
to further increase this precision, particular in the orienta-
tion, already with a moderate number of matched features.
The results were obtained with a fully autonomous system
where extensive tests with an overall length of more than
1.4 km and 9,500 localization cycles have been conducted.
Furthermore, general aspects of multisensor on-the-fly lo-
calization are discussed.

1. Introduction

Localization in unmodified environments belongs to the
basic skills of a mobile robot. In many potential service ap-
plications of mobile systems, the vehicle is operating in
structured or semi structured surroundings. This property
can be exploited by modelling these structures as geometric
primitives and using them as reliably recognizable features
for navigation. As it will be shown in this work, this ap-
proach leads to very compact environment descriptions
which allow for precise navigation with the limited compu-
tational resources fully autonomous systems typically pro-
vide. Furthermore, due to the extraction step, which is
essentially an abstraction from the type and amount of raw
data, information from sensors of any kind can directly be
included and managed in the same way, leading to versatile
and easily extensible environment models.

In this paper we take advantage of this property by simul-
taneously employing geometric features from different
sensors with complementary properties. We consider local-

ization by means of infinite lines extracted from 1D rang
data of a 360° laser scanner and vertical edges extract
from images of an embarked CCD camera. An extend
Kalman filter (EKF) is used for fusion and position estima
tion.

Navigation in a step-by-step manner where localization
performed only at standstill is unsatisfactory for many re
sons: The vehicle advances slowly, it has not a continuo
movement which is important for certain applications lik
cleaning tasks. The position update rate is low with respe
to the distance travelled making the matching problem d
ficult for any localization method, and it is aestheticall
suboptimal. Continuous localization during motion in rea
time – henceforth referred to ason-the-fly localization– is
therefore desirable but contains difficulties which ar
present but only hidden at low speed or step-by-step na
gation. This includes resolution and uncertainties of tim
stamps the system can provide for sensory inputs. They
pose bounds on localization precision and feature match
rates whose influence is to be studied when a localizati
method shall prove its relevance for real-world applic
tions.

Kalman filter localization with line segments from rang
data has been done early [6][7]. Vertical edges in combin
tion with an EKF have been employed in [4] and [8]. Th
combination of these features is used in [9] and [10]. In [9
a laser sensor providing range and intensity images with
a 60° opening angle was utilized, and in a recent work [10
the absolute localization accuracy of laser, monocular a
trinocular vision was examined. Similar precision has be
found for the three cases.

In contrast to these contributions this paper reports exte
sive experiments where the practicability of this multise
sor setup, the above mentioned features and an EKF
examined under application-like conditions. We consid
the improvement with respect to precision when the visio
information is added to the range information by means
the uncertainty bounds of thea posteriori position esti-
mates. For this, throughout of this work it was attempted
employ physically well grounded uncertainty models fo
odometry, laser range finder and vision system.
0-7803-6348-5/00/$10.00 ©2000 IEEE. 
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2. Sensor Modelling

Odometry: Non-systematic odometry errors occur in two
spaces: the joint space and the Cartesian space. With a dif-
ferential drive kinematics the joint space is two-dimension-
al and includes the left and right wheel. Effects of wheel
slippage, uneven ground and limited encoder resolution ap-
pear in this space. In [5] a physically well-grounded model
for this kind of errors is presented starting from the uncer-
tain input with as the
distances travelled by each wheel, and the diagonal input
covariance matrix

(1)

which relies on the assumption of proportionally growing
variances per travelled. The odometry model for
the first and second moment of the state vector

 is then

(2)

(3)

where uses a piecewise linear approximation,
is the state covariance matrix of the last step and is
the Jacobian of with respect to the uncertain vectors

and . and are constants with unit
meter.

The Cartesian space is spanned by encoding position
and orientation of the vehicle. Effects of external forces
(mainly collisions) occur in this space. Non-systematic
Cartesian errors can be additionally modelled in eq. (3) by
a covariance matrix being a function of the
robot displacement in the robot frame. Such a
model has been used in [4]. In any case it is difficult to
identify these models, i.e. to obtain rigorous values for

and the coefficients in which are valid for
a range of floor types. In this work we used only the model
of [5].

Laser Range Finder:The laser range finder which was
used in the experiments is the Acuity AccuRange4000LIR.
The rotation frequency of the mirror is 2.78 Hz, yielding a
1° angular resolution with its maximal sampling frequency
in calibrated mode of 1 kHz. It delivers range and inten-
sity as analogue signals. The latter is the signal strength
of the reflected beam and predominantly affects range var-
iance. In order to have a good physically based uncertainty
model of range variability accounting not only for the dis-
tance to the target but also for its surface properties, a rela-
tionship is sought. Identification experiments
with a Kodak gray scale patch performed in [2] yielded a
simple relationship describable by two parameters: al-

lows to reject too uncertain range readings with an
for measurement with a constant value for rang
variance  could have been found.

Camera: The vision system consists in a Pulnix TM-970
full-frame, EIA (640 x 480), grayscale camera with an 90
objective and a Bt848 based frame grabber which delive
the images directly to the main CPU memory. There is n
dedicated hardware for image processing.

The camera system is calibrated by combining meth
[11] with spatial knowledge from a test field. This provide
a coherent set of extrinsic, intrinsic and distortion param
ters. Since the visual features are vertical lines, only ho
zontal calibration is needed, yielding the simplified mod
of eq. (4) for parameter fitting

(4)

is the position of a point in the robot frame
, and , where the

coordinates refer to the distorted location of th
point in the uncorrected image. Focal length , scale fa
tor and image center are instrinsic paramete

and are extrinsic parameters defining the robot
sensor transformation and are the paramete
of radial distortion.

Uncertainties from the test field geometry and thos
caused by noise in the camera and acquisition electron
are propagated through the camera calibration proced
onto the level of camera parameters, yielding a p
rameter covariance matrix.

3. Feature Representation and Extraction

Laser Range Finder:The algorithm for line extraction
has been described in [1]. The method delivers lines a
segments with their first order covariance estimate usi
polar coordinates. The line model is

(5)

where is the raw measurement and the mo
el parameters. is the angle of the perpendicular to t
line, its length. The method differs from the widely use
recursive split-and-merge technique which is also appli
in [6] and [10] in the segmentation criterion: Instead of u
ing a line specific decision on a single point, it decides o
a model independent criterion on a group of points. Mult
ple segments which lie on the same physical object a
merged for particular precise re-estimates of the line po
tion. This is realized by an clustering algorithm with a Ma
halanobis distance matrix. It merges segments until th
distance in the -model space is greater than a thre
old from a -distribution. Figure 1 shows an extractio
example where six lines have been found.
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Camera: Vertical lines are extracted in four steps:
• Vertical edge enhancement: Specialized Sobel filter ap-

proximating the horizontal image gradient.
• Non-maxima suppression with dynamic thresholding:

The most relevant edge pixels (maximal gradient) are
extracted and thinned by using a standard method.

• Edge image calibration: The horizontal position of each
edge pixel is corrected yielding a new position  with

(6)

resulting from the camera model.
• Line fitting: Columns with a predefined number of edge

pixels are labelled as vertical edges. Line fitting reduc-
es to a one-dimensional problem. The resulting angle is

, where is the focal length and
the weighted mean of the position of the pixels in the
extracted line.

Uncertainty from the camera electronics is modelled on
the level of the uncalibrated edge image. Together with the
uncertainty of the calibration parameters it is propagated
through calibration and line fit, yielding the first two mo-
ments  of the vertical edges.

Map: The a priori map contains 117 infinite lines and 172
vertical edges for the m portion of the institute
building shown in fig. 2. This is an environment model of
extreme compactness with a memory requirement of about

.

4. Multisensor EKF On-The-Fly Localization

Under the assumption of independent errors, the estimation
framework of a Kalman filter can be extended with infor-
mation from additional sensors in a straight-forward way.

Since this paper does not depart from the usual use of
tended Kalman filtering and first-order error propagatio
most mathematical details are omitted. Please refer e.g
[3] for a profound treatment and [7] for its use in the con
text of mobile robot localization. Only aspects which ar
particular are presented.

Matching: We assume independent errors between t
sensors and between the features. Thus the observation
variance matrix is blockwise diagonal and w
have the freedom to integrate matched pairings in a man
which is advantageous for filter convergence:

The laser observations are integrated first since they ty
ically exhibit far better mutual discriminance making the
matching less error-prone, followed by the vertical edg
from the camera where often ambiguous matching situ
tions occur. Starting from the same idea, each pairing is
tegrated according to its quality in an iterative procedu
for each sensor:(i) matching of the current best pairing,(ii)
estimation and(iii) re-prediction of features not associate
so far. This procedure has also been used in [9] and [1
where similar observations concerning feature discrim
nance have been made.

The quality of a pairing of prediction and observa
tion is different for both sensors:
• For the line segments the quality criterion of a pairing

is smallest observational uncertainty– not smallest
Mahalanobis distance like in [9] and [10]. This renders
the matching robust against small spurious and uncer
tain segments which have small Mahalanobis distance
(see fig. 1). The ‘current best’ pairing is
therefore that of observation with

 which satisfies the validation test

(7)

where is the innovation covariance matrix of the
pairing and a number taken from a distribution
with degrees of freedom. is the level on
which the hypothesis of pairing correctness is rejected

• The criterion for vertical edges is uniqueness. Predic
tions with a single observation in their valida-
tion gate are preferred and integrated according to the
smallest Mahalanobis distance provided that they satis
fy eq. (7) with (subscript become ). When
there is no unique pairing anymore, candidates with
multiple observations in the validation region or obser-
vations in multiple validation regions are accepted and
chosen according to the smallest Mahalanobis distance

Time Stamps:The main difference from the viewpoint of
multisensor localization between step-by-step and on-th
fly navigation is that temporal relations of sensor observ
tions, predictions and estimations of all sensors involv
have to be maintained and related to the present. This
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Figure 1: A scan of the Acuity sensor and the extraction
result. Eight segments on six lines have been found. Two
closely situated objects produced evidence for the two
‘outlier’ segments. Thus, the local map contains six

-pairs which are passed to the EKF matching step.α r,( )
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ẑv
j[ ] zv

i[ ]

n 1= l v



100

105

110

115

laboratory

elevator

seminar room

coffee room

rd-
r-

nd-
r.
r,
l,
ate
d

re-
er-
se
d-
-
ble

he
r).

ore
at-

ity
ity
e
evel
ex-
d

a
in

s-
e
tion
on

a
ed

-
he
o-

Figure 2: Floor plan of the
environment where the
experiments have been con-
ducted. The points show the
locations where the robot
localized itself during one of
the tests. Crosses indicate
the modelled vertical edges.
The robot starts in the labo-
ratory, goes to the elevator,
then passes through the cor-
ridor to offices 1, 2 and 3,
continues to the seminar
room and returns to the lab-
oratory via the coffee room.
The trajectory length is
140 m and has been driven
10 times with about 950
localization cycles per run.
The average speed was 0.3
m/s, maximal speed 0.6 m/s,
resulting in about 7’45” for
the whole path.
In order to compare the mul-
tisensor setup and the laser-
only setup with respect to
localization accuracy, five
runs have been made with
laser-only, five with laser
and vision. The resulting
uncertainty of the a posteri-
ori position estimates are
illustrated in fig. 4, overall
averages are given in
table 1.
75
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85 90 95done by assigning time stamps to observations and reco
ing odometry into a temporary buffer. When sensor pe
forms its data acquisition, the data receive a time stamp
and, after feature extraction is completed, the correspo
ing state prediction is read out from the odometry buffe
When the position estimate arrives from the Kalman filte
it is valid at time stamp . Based on the odometry mode
a means is then needed to relate this old position estim
to the current position of time . This is done by forwar
simulation of eq. (2) and eq. (3) from  to .

For a multisensor system, care has to be taken that p
diction and estimation results of one sensor are not ov
written by those of another sensor. This would be the ca
if each sensor would have its own EKF running indepen
ently from the others with its own cycle time, yielding tem
porally nested updates. Nested updates are unfavoura
since a slow outer update cycle (e.g. vision) overwrites t
estimation results of faster running inner cycles (e.g. lase
A sequential scheme of EKFs for each sensor is theref
required with the constraint that the estimates get integr
ed in the succession of their respective observation.

Scan Compensation:The vehicle movement imposes a
distortion on the raw data of the laser scans. This deform
depends on the ratio robot speed to mirror rotation veloc
which in our case is non-negligible. It is important to not
that scans have to be compensated on the raw data l
and not on the feature level. Since in the latter case the
traction method would operate with an artifically modifie
features evidence.

We compensate for the vehicle displacement during
scan by transforming each range reading acquired
the sensor frame into the non-stationary robot frame
and then into the world frame . Followed by a re-tran
form into the stationary robot frame and finally into th
desired reference frame of the scan . For a compensa
on-the-fly, must be the sensor frame at the start positi
of a new scan. By reading out odometry each time when
new range reading arrives, it gets immediately transform
by the expression

, (8)

where . The matrices are homogene
ous transforms casting the rotation and translation of t
general transform into a single matrix. is the sensor-t
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al robot pose vector . The
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been started recording.
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5. Implementation and Experiments

5.1 The Robot

Our experimental platform is the robotPygmalionwhich
has been built in our lab (fig. 3). Its design principles are
oriented towards an application as service or personal ro-
bot. Long-term autonomy, safety, extensibility, and friend-
ly appearance were the main objectives for design. With its
dimensions of about 45x45x70 cm and its weight of 55 kg
it is of moderate size and danger opposed to many robots in
its performance class.

5.2 Experimental Results

The experiments have been conducted in the environment
illustrated in figure 2. It shows the floor plan of a

m portion of the institute building. In the laser-
only mode and in the multisensor mode the trajectory has
been driven five times. The overall trajectory length is 1,4
km with 9,500 localization cycles. Care has been taken that
both experiments had the same localization cycle time by
limiting the implementation to 2 Hz resulting in about 950
cycles on the 140 m test trajectory. The average speed was
0.3 m/s, maximal speed 0.6 m/s. The robot was driven by
its position controller for non-holonomic configurations.
No obstacle avoidance was active.

The resulting 2 -uncertainty bounds of the a posteriori
position estimates are shown in figure 4. For both cases
they generally reflect a very high localization accuracy in
all three state variables. Subcentimeter precision is ap-
proached. Table 1 shows the overall means of error bounds

, number of matches per localization cycle
, and execution times . The vision information

contributes equally to a reduction of uncertainty in and
, but particularly in the orientation .

This although the average number of matched vertical edg-
es is moderate. A cycle time stands for one localization it-
eration under full CPU load and sensor data acquisition.

5.3 Discussion

Even carefully derived uncertainty bounds do not necess
ily permit inference about the sought first moments, sin
the estimation error could be arbitrarily big without bein
noticed (estimator inconsistency). We argue that the sim
fact that the robot always succeeded in returning to its st

Figure 3: Pygmalion, the
robot which was used in
the experiments. It is a
VME based system carry-
ing currently a PowerPC
card at 300 MHz. Besides
wheel encoders and bump-
ers, the sensory system
includes a 360° laser range
finder and a gray-level
CCD camera discussed in
the second chapter. During
the experiments it ran in a
fully autonomous mode.
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Figure 4: Averaged 2 –error bounds of global (a),
(b) and (c) a posteriori uncertainty during the test tra
jectory (showing only each 5th step). In each mode, fi
runs have been made. Solid lines: laser range finder on
dashed lines: laser and vision. In some cases the unc
tainty in the multisensor mode is greater than for the sin
gle-sensor setup. This is possible since the values a
averaged over five runs containing noise on the levelf
matched features.

σ x y
θ

(a)

(b)

(c)

laser laser and vision

1.31 cm 1.07 cm

1.35 cm 1.05 cm

0.92° 0.56°

2.73 / – 2.66 / 2.00

64 ms 411 ms

Table 1: Overall mean values of the error bounds, th
number of matched line segments and matched verti
edges , and the average localization cycle time
under full CPU load.
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point is compelling evidence for the correctness of these
bounds. In fact, they are even conservative estimates since
the true bounds could be better. Otherwise the robot would
have gone lost due to a lack of matches caused by first mo-
ments drifted away from the true values. Ground truth in-
formation like in [10] would be preferable but is
impractical and expensive to obtain for experiments of this
kind and extent. Positioning accuracy of the vehicle in the
endpoint has been determined and further confirms the val-
ues in Table 1.

Matching vertical edges is, due to their lack of depth in-
formation and their frequent appearance in compact
groups, particularly error-prone. For example, door frames
commonly have multiple vertical borders which, depend-
ent on the illumination conditions, produce evidence for
several closely situated vertical edges. In the matching
stage, they might be confronted with a large validation re-
gion, position bias from odometry or time stamp uncertain-
ty making the predicted model edge difficult to identify. In
such an ambiguous matching situations, incorrect pairings
are likely to occur and, in fact, have been occasionally pro-
duced in the multisensor experiments. But their effect re-
mains weak since these groups are typically very compact.

However, this lack of discriminance in the presence of
time stamp uncertainty is the main cause of reproducible
failure of vision-only navigation. With the frame grabber in
use, it is difficult to identify the precise (i.e. down to a few
ms) instant when the image is taken. Also odometry quan-
tization (in our case 5 ms), furthermore bounding time
stamp accuracy, became noticeable particularly during fast
turns. (the camera of Pygmalion is not mounted on a turret
which maintains a constant orientation). Modeling time
stamp imprecision would yield larger validation gates
around the predictions. But this does not solve the problem
if matching situations are already found to be ambiguous.

6. Conclusions and Outlook

In this paper a multisensor setup for localization consisting
of a 360° laser range finder and a monocular vision system
is presented. It combines infinite horizontal lines from the
laser and vertical edges from the camera. Its practicability
under conditions of on-the-fly localization is investigated
in large-scale experiments. Very high localization preci-
sion is achieved with an extremely compact environment
description provided by the employed features. The vision
information has been found to further increase this preci-
sion, particular in the orientation, already with a moderate
number of matched edges. By having performed extensive
tests with a fully autonomous system on an overall length
of more than 1.4 km and 9,500 localization cycles we dem-
onstrated the relevance of the localization setup for real-
world applications.

Vision-only navigation failed in our experiments. This i
due to the modest mutual discriminance of vertical edge
making them difficult to match, in combination with non
negligible time stamp uncertainties. This motivates the u
of constraint-based matching schemes with this type of fe
ture particularly for vision-only navigation. Future work
will focus on such matching techniques by introducin
unary or binary constraints. Besides, more complex visi
features shall be employed for semantically richer enviro
ment models.
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