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Abstract

Mobile robot localization deals with uncertain sensory information as well as uncertain data association. In this paper
we present a probabilistic feature-based approach to global localization and pose tracking which explicitly addresses both
problems. Location hypotheses are represented as Gaussian distributions. Hypotheses are found by a search in the tree of
possible local-to-global feature associations, given a local map of observed features and a global map of the environment.
During tree traversal, several types of geometric constraints are used to determine statistically feasible associations. As soon
as hypotheses are available, they are tracked using the same constraint-based technique. Track splitting is performed when
location ambiguity arises from uncertainties and sensing. This yields a very robust localization technique which can deal with
significant errors from odometry, collisions and kidnapping. Experiments in simulation and with a real robot demonstrate
these properties at low computational costs.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Kalman filter-based position tracking with geo-
metric features[1,6,9,16] has been proven to be a
very powerful localization technique with several
desirable properties: It operates with minimalistic
environment representations, it is robust with re-
spect to environment dynamics and combines un-
bounded localization accuracy with light-weight
implementations.

Clearly, position tracking using an extended
Kalman filter (EKF) is a local localization technique
with the typical risk of loosing the track and going
lost. This is in contrast to the POMDP or Markov
approach to localization[12,18,20]which maintains
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a probability distribution over a topology of nodes,
previously overlaid onto the environment. Within this
graph the robot can never go lost as long as a location
probability is maintained for each node. In this man-
ner, arbitrary densities can be represented in order
to cope with the problem of location ambiguity. Re-
cently, new approaches which overcome limitations
of earlier methods have been proposed[10,15]. They
employ the principle of particle filters where the den-
sity function of the robot location is approximated
by a set of randomly drawn samples. However, all
these techniques maintain constantly a big number of
hypotheses which in the case of particle filters has
to be carefully weighted, updated and re-distributed.
The ability of these techniques to properly react to lo-
cation ambiguity from environment or sensing is due
to the quantity of samples and a distribution strategy
which must be appropriately chosen.
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Unlike these methods which can be denoted
location-driven, our approach to global localization
will be feature-driven. It reacts directly to the environ-
ment in the sense that features tell uswhenandwhere
to place a location hypothesis—not an a priori topo-
logical graph or a dynamically maintained sample set.
This allows to maintain exactly as many hypotheses
as necessary and as few as possible. The technique
which provides this property is a constraint-based
search in an interpretation tree[6,11,13,17]. This tree
is spanned by all possible local-to-global associa-
tions, given a local map of observed featuresL and
a global map of model featuresG. We further present
a constraint-based tracking splitting filter which em-
ploys the same technique for hypothesis tracking. Hy-
pothesis generation and tracking constitute together a
framework for global EKF localization.

Earlier work[8] deals with multiple hypotheses for
map building. Using segments and corners from ul-
trasonic sensors, their hypotheses model atypological
feature ambiguity since the feature type was difficult
to distinguish. We believe that with today sensors
(laser and vision) feature extraction can be made very
reliable and that ratherspatial feature ambiguity is an
issue to address. Other approaches like[21] propose
hybrid models to combine advantages from the EKF
and POMDP-worlds. However,[21] requires a clearly
structured room-hallway topology since otherwise
the approach reduces to an EKF technique with the
known limitations.

A feature in this context is a geometric primitive
containing at least one geometric measure such as
angle, range, (x, y)-position or (x, y, θ)-pose. They
are models for physical objects in the environment
such as doors, walls, corners, columns, or even fire
extinguishers. Figures will use point-, angle- and line
features for illustration. The approach is, however,
completely general with respect to the feature type.

1.1. Motivation and problem statement

With EKF-based position tracking using features,1

the cause of a lost situation is virtually always an
incorrect data association. After extensive experiments
with this localization technique on more than 100 km

1 We will use the termslocation, positionandposeinterchange-
ably. They denote all the full (x, y, θ) vehicle pose.

Fig. 1. A situation where the robot goes lost and where this is very
difficult to detect: when the vehicle arrives at the end of a corridor
with a critical amount of accumulated odometry drift (predicted
pose in gray, true pose in black), the local point feature{l2} is
wrongly matched even if the uncertainty models are correct. Instead
of the pairing{l2, g2}, the wrong pairing{l2, g3} is produced.

travel distance with three different robots[1,2], we
locate the predominant reasons for false associations
as follows:

• Heavy violations of system and system noise mod-
els. Collisions or significant odometry drift in di-
rections which were not correctable by the obser-
vations (Fig. 1).

• Feature discriminance. Low feature discriminance
is spatial sensing ambiguity on the level of extracted
features and expresses itself as proximity in the
feature’s parameter space (Fig. 2).

In practice, single hypothesis tracking can often re-
cover a robot which went lost due to non-discriminant
features, since they typically yield close-to-the-truth
pose estimates. But in general, both problems, espe-
cially in simultaneous occurrence, can lead to false
associations and irrecoverable lost situations. Robust
localization must therefore address the data associa-
tion problem. Association ambiguity occurs locally,
during tracking, and globally after a lost situation or
kidnapping. We present two structurally identical al-
gorithms which rely on the same idea for each problem
forming thus a consistent approach to localization.

Fig. 2. Examples of feature types which are typically subject to
low feature discriminance: (a) angle features modeling corners, (c)
point features modeling columns, (b) and (d) line features modeling
walls. Less critical are features of higher parameter dimensionality
as segments or circles or features of natural discriminance as doors.
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2. Hypothesis generation

Robot location ambiguity is represented by mul-
tiple Gaussian location hypotheses. We employ data
association on a discrete feature-to-feature basis: A
pairing pij = {li, gj} is the association of the mea-
surementli with gj saying thatli and gj denote the
same physical object in the environment (gj is called
an interpretation of li). The local map of observed
featuresL = {li}pi=1 and the global map of model
featuresG = {gj}mj=1 span the search space of all
possible data associations which has the structure of
a tree withp levels andm+ 1 branches[13]. p is the
number of observed features inL, m the number of
modeled feature inG. The extra branch (calledstar
branch) allows associations in the presence of outlier
observations (false positives) and thus accounts for
environment dynamics and map errors. During tree
traversal, statistically feasible pairings are sought
given all uncertainties associated to the features. In or-
der to test a potential pairing, geometric constraints are
applied. Although the problem is of exponential com-
plexity, geometric constraints reduce enormously the
space to be explored. They allow to discard whole sub-
trees each time when an incompatible pairing is found
at the root of such a subtree. With the uncertainties as-
sociated to the local and global features, all decisions
make use of the Mahalanobis distance on a signifi-
cance levelα. If a compatible pairing is found (com-
patible on the levelα), it is added to thesupporting set
Sh = {{l1, gj1}, {l2, gj2}, . . . , {lp, gjp}}. The support-
ing set and the robot location, denotedLh = (x, P)

with x andP being the first and second moments, form
a location hypothesish = {Lh, Sh}. All hypotheseshi
together make up the set of hypothesesH = {hi}ni=1.

2.1. Geometric constraints

We can classify geometric constraints into two cat-
egories: Location independent constraints can be val-
idated without having an estimation of the robot loca-
tion. They includeunaryandbinary constraints.

Unary constraintsapply on intrinsic properties of
a feature. Examples are feature type, color, texture
or dimension such as length or width. Unary com-
patibility is directly found by comparison (function
satisfy unary constraints). They are pow-
erful since whole subspaces can be excluded from

the search beforehand. Example: with line segments,
unary compatibility is satisfied if the length of the ob-
served segmentli is smaller or equal than the length
of the modeled segmentgj.

Binary constraintsalways apply to the features of
two pairings and test on relative measures such as
angle or distance. Binary constraints are used to val-
idate whether two local features are consistent with
two global features (functionsatisfy binary
constraints). Example:li and lk are lines with
the intermediate angleϕik. Then, the pairingpkl is
considered compatible if the angleϕjl is identical.
With point features, for instance, the distancesli–lk
andgj–gl must correspond.

The second category are location dependent con-
straints which come into play as soon as a robot
locationLh is available.

Visibility constraintsonly apply to model features.
It tests whethergj is visible from Lh. Non-visibility
can be due to feature properties as relative view direc-
tion or due to sensor limitation as maximal range or
resolution. Example: lines or segments can always be
seen only from one side. If the robot is behind a wall,
one of the two lines modeling that wall is invisible
and can be discarded from further consideration.

Rigidity constraint. A pairing pij is considered
compatible if li and gj, transformed into the same
coordinate system givenLh, coincide (are at the same
position). This is what commonly happens in the
matching step of an EKF localization cycle. Usually,
gj is transformed into the frame ofli.

Extension constraintstest whether an observed fea-
ture is fully contained in the candidate model feature
(they completely overlap). This is relevant for features
like line segments or circular arcs whose observations
can be smaller than the model features in some sense.

2.2. The search algorithm

Tree traversal is realized as a recursive back-tracking
search (Algorithm 1, [7]). The strategy ofAlgorithm 1
is to first find a minimal number of pairings with loca-
tion independent constraints such that a robot location
can be estimated and location dependent constraints
can be applied too (partB).

When an observation is selected from the local map
(function select observation), optional rules
can be applied to choose an observation which gen-
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Algorithm 1. Given a local mapL and the global mapG, the
algorithm returns the set of generated location hypothesesH.

erates as few pairings as possible. As soon as a
robot location estimate is available (functionloca-
tion available), the algorithm applies location
dependent constraints (satisfy location dep-
endent cnstr). If a new acceptable pairing
is found, it is added to the supporting setSh =
{p1, p2, . . . , pp}, the location estimate is refined
(function estimate robot location) and the
function recurs (partA).

Each time when the algorithm reaches the bot-
tom of the tree, all observed featuresli have been
assigned, either to a model featuregj or to the star
branch. Then, we have a valid robot location hy-
pothesis which can be added toH. In the beginning,
with H = { } and a given, non-emptyL and G, h,

is not needed. It appears, however, as an argument
of generate hypotheses since the algorithm is
recursive. The properh to start with hasSh = { } and
Lh such thatlocation available returns false.

Note that the significance levelα is the only param-
eter the user has to specify. It decides on acceptance
or rejection of pairing candidates.

2.2.1. Estimating the robot location
Given a supporting setSh, the robot positionLh

can be estimated using the EKF. The Kalman filter
is, however, a recursive formulation, well suited for
tracking applications where there is always an a priori
state estimate. For the case of hypothesis generation
where no a priori position is available, an adequate
reformulation of the EKF is the extended information
filter (EIF). The EIF is a batch estimator and resembles
directly the weighted mean (refer to[4] for derivation
and details).

Let v denote the stacked innovation vector of all
pairings{li, gji} andR its associated covariance ma-
trix. Let further ∇h be theq × 3 Jacobian matrix of
the linearized feature measurement model (the frame
transform) with respect to the robot position.q is the
number of observations which is the number of ob-
served featuresp times their number of feature param-
etersr. Then the EIF is as follows:

P−1(k + 1|k + 1)

= P−1(k + 1|k)+ ∇hTR(k + 1)−1∇h, (1)

x̂(k + 1|k + 1)

= P(k + 1|k + 1)[P−1(k + 1|k) · x̂(k|k + 1)

+∇hTR(k + 1)−1∇h · ξ(k + 1)], (2)

whereξ(k + 1) is a 3× q-matrix such that

∇h · ξ(x+ 1) = v(k + 1). (3)

Assigning zero weight to the odometry-based state
prediction can be elegantly done by setting its
inverse—the information matrix—to zero

P−1(k + 1|k) = 03×3. (4)

By substitutingEq. (4)into Eqs. (1) and (2)and using
(3), we obtain a conventional equation system where
we can easily see that dependent onq, being greater
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or smaller than three, the system is over- or underde-
termined.

∇h · x̂(k + 1|k + 1) = v(k + 1). (5)

The solution of (5) is obtained via the pseudoinverse

∇h′ = (∇hT∇h)−1∇hT (6)

where we can distinguish between∇hT∇h being
singular or non-singular. In the latter case, the equa-
tion system (5) has a unique solution in the least
square sense (location available returns true).
In the former case, only a non-unique pose esti-
mate with infinite number of solutions is returned
(location available returns false).

3. Hypothesis tracking

With a localized robot doing pose tracking, data
association ambiguity can arise as discussed in
Section 1.1. In such a situation there are several statis-
tically feasible pairing candidates for an observation.
The closest one (in a Mahalanobis sense) is not nec-
essarily the correct one. Choosing it when it is the
wrong candidate will lead to filter inconsistency and
likely to filter divergence. This is the most widely ap-
plied strategy, called nearest neighbor standard filter
(NNSF).

Here, we will pursue another strategy. As soon as
there is association ambiguity, that is, there is no guar-
antee anymore for the correct association to be found,
we will re-generate hypotheses locally (Fig. 3). This is
what track hypothesis does, given a predicted
location, a local and a global map. It splits up into
multiple offspring hypotheses if statistical compatibil-
ity with several supporting sets can be established at
that location. This strategy is also known as the track
splitting filter [5]. Here we perform track splitting un-
der geometric constraints which bound the number of
possible tracks.Algorithm 2 has the identical struc-
ture thanAlgorithm 1but employs location dependent
constraintsonlyand doesnot recur with a refined posi-
tion estimation. In this manner the algorithm finds all
supporting sets in the vicinity of the initially predicted
locationLh and returns them in form of a hypothesis
set Ht . Again, the second recursion call implements
the extra branch in the interpretation tree that allows

Fig. 3. The idea behind the position trackingAlgorithm 2: A
well localized robot in (a) moves and observes asingle feature in
(b) where it is impossible to say which is the correct pairing in
view of the uncertainties. Instead, the hypothesis splits up in (c)
representing thereby all possible pairings at that location. The two
hypotheses are tracked using location dependent constraints until
a single one remains.

correct associations in the presence of outlier obser-
vations and map errors. SinceLh is not reestimated,
track hypothesis will generate hypotheses in a
region whose size depends on the uncertainty ofLh.
If Lh is certain, track splitting is unlikely to occur. If
it is uncertain, feasible supporting sets will be found
in a larger area aroundLh (see alsoFig. 4).

After track hypothesis has been applied for
eachhi in H, we can distinguish the three cases veri-
fication, falsification and division:

Algorithm 2. Given the local mapL, the globalG and the hypoth-
esish to be tracked at locationLh, the algorithm returns the set
of tracked hypothesesHt .
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Fig. 4. Hypothesis duplication. Given a local map with a (x, y)-point
feature l1, and an angle-only featurel2, hypothesesh1, h2 split
up each into four offsprings after a (very) uncertain movementA
to B. This results in eight hypotheses atB, four of them being
redundant.

• |Ht| = 1 hypothesis verification. The hypothesishi
is confirmed. This is the estimation step in an EKF
localization cycle. Given the supporting setShi , the
robot location is estimated andhi is admitted to the
newH.

• |Ht| = 0, hypothesis falsification. The hypothesis
cannot be held any more by location dependent con-
straints on the significance levelα. It gets rejected.

• |Ht| > 1, hypothesis division. The track of hypoth-
esis hi splits up into several offspring hypothe-
ses{hi,1, hi,2, . . . , hi,o} which all can be held by
location dependent constraints at the predicted
robot location. The robot locations are estimated
with the EIF using their respective supporting
set.

With multi-hypothesis localization, there is no
strict distinction of being localized and being lost.
There are three cases which can be characterized
by n, the number of hypotheses inH: being lost is
expressed asn = 0 (without any valid hypotheses),
not localizedmeans that there is unresolved loca-
tion ambiguity,n > 1, and beinglocalizedis simply
expressed as having a single location hypothesis,
n = 1.

3.1. Hypothesis elimination during tracking

When an uncertain hypothesis splits up, it can hap-
pen thatduplicate hypothesesare produced. This is
shown inFig. 4, where two hypothesesh1, h2 split
up and produce each four hypotheses. If these dupli-
cates are not eliminated,H will contain redundant in-
formation, and thus undermining our intent to reach
and maintainn = 1.

3.1.1. Duplicate detection
Two hypotheseshi, hj are identical if they contain

the same piece of information which in our case is
identical location. Identical location is due to identical
supporting sets

hi ≡ hj ⇔ (Shi = Shj ). (7)

This condition is further to be generalized with the
distinction of a unique (�hi is true) and a non-unique
(�hi is false) robot location estimate. In the latter case
the current observation contains not enough informa-
tion to uniquely estimate a robot position (e.g. robot
observes a single angle-only feature). Then, the EIF
is underdetermined and will return an infinite number
of solutions. These solutions denote a degree of free-
dom in the robot position. Along this degree of free-
dom, condition (7) is unable to distinguish duplicate
hypotheses because several distinct hypotheses can be
aligned to the same model feature. We therefore add
a distance condition along this degree of freedom. Let
xhi , xhj andPhi, Phj be the first and second moments
of Lhi andLhj , respectively, then ‘closeness’ is de-
fined by means of the Mahalanobis distancedhihj .
Thus

dhihj = (xhi − xhj )(Phi + Phj )−1(xhi − xhj )T, (8)

hi ≡ hj ⇔
{
(Shi = Shj ) �hi ,

(Shi = Shj ) ∧ (dhihj < χ2
α) ¬�hi ,

(9)

with χ2
α the value chosen from aχ2-distribution with

three degrees of freedom at the levelα.

3.1.2. Duplicate rejection
Unlike the Bayesian approach to data association,

hypotheses generated with our method do not have
an individual probability. They are equally plausible
robot locations since they satisfy their uncertain ge-
ometric relationships on the same given significance
level α.

Hypotheses differ, however, in their support by
paired features and their geometric quality. The former
is measured by the number of valid (non-star-branch)
associationsp′ in Sh and the latter by the joint Ma-
halanobis distance. The joint Mahalanobis distance
is like the Mahalanobis distance (8) except that it
applies not only to a single pairing but sums up over
the whole supporting set including correlations. It



K.O. Arras et al. / Robotics and Autonomous Systems 44 (2003) 41–53 47

accumulates the weighted squared error distances
(residuals), and thus is a goodness-of-fit measure.

The best hypothesis is the one maximizingp′ and,
in case of a tie inp′, minimizing the joint Mahalanobis
distance. In other words, we choose the hypothesis
which has most paired features and, from its location,
satisfies best the rigidity constraint.

4. Experiments

In the simulation experiment, odometry employs
two error models (see below) whereas observations
and model features receive a typical, constant and
uncorrelated uncertainty. In the beginning, the user
drops the robot at a position from which—sinceH
is empty—the hypothesis generation phase is started.
Tracking is done by manually placing the robot rela-
tive to its last true position. These user positions are the
predicted odometry positions for which the error mod-
els compute the corresponding uncertainties (robots
drawn in gray with 95%-ellipses inFig. 5). The real
robot (black inFig. 5) is subject to errors according
to the models and reaches the specified locations only
approximately. Finally, kidnapping noise can be intro-
duced as illustrated in the experiment.

The simulation run ofFig. 5shall test simultaneous
hypothesis generation and tracking under conditions
of artificially exaggerated odometry errors and low
feature discriminance. We inject

• Wheel space noiseaccounting for uneven floors,
wheel slippage or resolution artifacts. Error growth
factors have been magnified by a factor of 2 with
respect to the identified values in[1].

• Cartesian space noiseaccounting for collisions. A
simple model with error growth proportional to the
relative angular and translational displacement has
been taken. Growth factors have been magnified by
a factor of 10 of what would be physically sug-
gested.

• Kidnapping noiseaccounting for the case of a robot
clandestinely brought away from its true position.
This type of noise is unmodeled.

The experiments on the real platform (using normal
uncertainty parameters) are shown inFigs. 7 and 8.
Fig. 7 illustrates hypotheses generation andFig. 8
shows an experiment on multi-hypothesis tracking

where by random movement the true hypothesis is
found. The line extraction method used in the experi-
ments is the one from[2].

4.1. Simulation results

In step 1, the robot has no a priori knowledge on its
position and observes two perpendicular lines. This
yields 72 hypotheses (Fig. 6a). Steps 2, 3 and 4 are
sufficient to localize the robot which stays localized
until step 8. This although the robot moves blindly
on a long distance between steps 6 and 7, causing the
uncertainty to grow extensively and thus the error of
the true robot as well. In step 11, the robot tries to
move forward but collides with a person. It ends up
far from the predicted odometry position. No valid
pairings can be produced with the current local map
at that prediction yielding zero hypotheses—the robot
is lost. Hypothesis generation is therefore activated at
step 12 with four observed lines. These four lines turn
out to be globally unique in combination and there-
fore yield a single (the true) hypothesis. During steps
13–17 (Fig. 6b) this hypothesis splits up several times
since uncertainties do not allow to uniquely determine
the true supporting set. Although the lines which give
rise to the track splitting are 40 cm apart, the uncer-
tainties from odometry forcetrack hypothesis
to generate two or more hypotheses aligned to these
lines. In step 18 we kidnap the robot and bring it far
down to the bottom of the corridor. The observation
at step 18 is still compatible with its expectation from
the predicted position (gray). There is no evidence
yet to the robot of what happened. Only at position
19 no location dependent constraints can be satisfied
anymore—the robot is lost again. The local map from
position 20 consists of three lines and yields 12 hy-
potheses (Fig. 6c) which can be falsified during the
last steps up to the true one (Fig. 6d): the robot is
localized again.

During this 23 step path, the following data has been
recorded: The average relative displacement between
the observations of each step is 1.49 m and−18.0◦ in θ.
The average prediction error—difference of predicted
(gray) and true (black) location—is 0.26 m and 10.2◦.
A total of 31 hypotheses performed track splitting into
a total of 70 offspring hypotheses. Further, the number
of floating point operations has been determined as 58
kflops in average and 355 kflops maximal.



48 K.O. Arras et al. / Robotics and Autonomous Systems 44 (2003) 41–53

Fig. 5. The simulated test path. Besides extensive odometry uncertainties and errors, the robot collides with a person at step 11 and gets
kidnapped at step 18.

The algorithm succeeded always in generating,
tracking and confirming the true robot hypothesis.
This is remarkable in view of the extent of odometry
errors and the average distance between two obser-
vations. The robot stays localized in the presence of
errors and sensing ambiguities where, drawn from ex-
perience, a single hypothesis tracking would fail. This

is a dramatic increase in robustness which is made
possible with relative small computational costs.

4.2. Results on the real robot

The local map in the experiment ofFig. 7
contains six segments with segment number 202



K.O. Arras et al. / Robotics and Autonomous Systems 44 (2003) 41–53 49

Fig. 6. Hypothesis setH at (a) step 1, (b) steps 13–17, (c) step 20 and (d) steps 21 (four hypotheses), 22 and 23. Ellipses inFigs. 5 and
6 denote 95% probability levels.
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Fig. 7. Generation results for the shown local map on different
levels ofp′. Execution time is 633 ms. The experiment was carried
out on Pygmalion (top left) with a PowerPC604e at 300 MHz CPU.

stemming from a door standing half open. Withp =
p′ + p∗ as the number of local observations, letp′ be
the number of paired observations, andp∗ the number
of associations to the star branch. With at least two

Table 1
Statistics of the tracking experiment inFig. 8

Track no. Length (m) Step of elimination

1 0.62 13
2 1.89 47
3 2.52 (end) 82 (end)
4 0.77 20
5 0.77 20

associated local features, we obtain 63 hypotheses,
shown inFig. 7. If we draw only those withp′ ≥ 3,
we obtain four hypotheses and two hypotheses for
p′ ≥ 4 successful pairings. The only hypothesis with
p′ = 5 is the one at the bottom right of the two
remaining ones which is the true hypothesis in the
experiment. Since there is an unmodeled feature in
the local map (the door), no hypothesis withp′ = 6,
or p∗ = 0, respectively, is generated. The execution
time for hypothesis generation was 633 ms.

Starting from five location hypotheses inFig. 8, the
robot is able to reject the four incorrect hypotheses
after a 1.89 m path. The fact that the robot of tracks
1 and 4 is partially standing within an object is not
a rejection criterion sinceAlgorithm 2 only falsifies
hypotheses by geometric contradiction and because
this kind of information is not contained in the map
(feature maps are not free-space maps) (Table 1). The
irregular distribution of path points visualizes the in-
stants when the OS scheduler brought the localization
task (a non-RT thread) into foreground. The average
tracking time is about 10 ms per hypothesis.

5. Related work

An important innovation of this work is the way
data association is made. Firstly, features are matched
to features—not locations to locations[14]. Secondly,
opposed to other approaches using Gaussian hypothe-
ses with features[3,14,19], we do not associate fea-
tures serially, one at a time, but consider the whole
local mapL with its binary constraints at once. This
has several advantages.

It substantially reduces the number of possible data
associations since features must additionally satisfy
mutual constraints from their geometric configuration
(L) in order to be admitted as valid data association
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Fig. 8. Multi-hypothesis tracking. Track 3 turns out to be the true one after the last track (2) was rejected at a distance of 1.89 m at step 47.

members. An example illustrates the difference:
Given a robot which observes a door and two walls,
a global map containing, say, 50 lines and 30 doors
and assuming that this particular geometric combina-
tion of a door and two walls is globally unique in the
map. When considering each feature independently,
the observed door will already produce 30 location
hypotheses and each wall inL will give rise to 50
further hypotheses, making 130 possible locations.

Our technique will directly generate the single glob-
ally unique pose being the only location from which
the door and the two walls are seen as in the local
map.

A further advantage is in the use of features which
yield non-Gaussian location densities such as lines,
segments or (x, y)-points. The resulting distributions
have the form of a diffuse line, a diffuse segment
and a diffuse ring, respectively. This is a common
limitation of approaches with Gaussians hypotheses
since such distributions are poorly described by the
first two moments and require the use of higher-order
statistics. With a single feature-to-feature scheme,
this limitation is very sensible since each feature must
deliver more than two observations. Refs.[3,19] for
example, do not consider the above feature types at

all. In [14] the distinction betweencreative(q ≥ 3)
and supportive features (q < 3) is made. For the
generation of location hypotheses, they can only use
creative features. To overcome this drawback, they
form high-level features using several supportive fea-
tures in order to obtainq ≥ 3. This, however, requires
a specific treatment (in the EIF, for instance) of each
combination and number of supportive features.

Our method is significantly less sensitive to that
limitation because it requires only that the whole local
mapL provides more than two observationsq (refer
to Section 2.2.1for the definition ofq).

6. Conclusions

From the experiments we conclude that the pre-
sented approach combines the good properties of EKF
localization with globalness. Geometric constraints for
data association is a powerful decision mechanism
with good convergence properties and allows an opti-
mal management of hypotheses: as many as necessary
and as few as possible. The experiments suggest that
the approach is practical in a real world embedded
system implementation.



52 K.O. Arras et al. / Robotics and Autonomous Systems 44 (2003) 41–53

References

[1] K.O. Arras, N. Tomatis, B. Jensen, R. Siegwart, Multisen-
sor On-the-fly localization: precision and reliability for appli-
cations, Robotics and Autonomous Systems 34 (2–3) (2001).

[2] K.O. Arras, R. Siegwart, Feature extraction and scene inter-
pretation for map-based navigation and map building, in:
Proceedings of the SPIE, Mobile Robotics XII, vol. 3210,
1997.

[3] D. Austin, P. Jensfelt, Using multiple gaussian hypotheses to
represent probability distributions for mobile robot locali-
zation, in: Proceedings of the IEEE International Conference
on Robotics and Automation, San Francisco, USA, 2000.

[4] Y. Bar-Shalom, X.-R. Li, Estimation and Tracking: Principles,
Techniques and Software, Artech House, 1993.

[5] Y. Bar-Shalom, X.-R. Li, Multitarget-Multisensor Tracking:
Principles and Techniques, 1995. ISBN 0-9648312-0-1.

[6] J.A. Castellanos, J.D. Tardos, J. Neira, Constraint-based
mobile robot localization, in: Proceedings of the 1996
International Workshop on Advanced Robotics and Intelligent
Machines, Salford, UK.

[7] J.A. Castellanos, J.D. Tardos, Mobile Robot Localization
and Map Building: A Multisensor Fusion Approach, Kluwer
Academic Publishers, Dordrecht, 1999.

[8] I.J. Cox, J.J. Leonard, Modeling a dynamic environment
using a Bayesian multiple hypothesis approach, Artificial
Intelligence 66 (2) (1994) 311–344.

[9] J.L. Crowley, World modeling and position estimation for a
mobile robot using ultrasonic ranging, in: Proceedings of the
IEEE International Conference on Robotics and Automation,
Scottsdale, USA, 1989.

[10] F. Dellaert, D. Fox, W. Burgard, S. Thrun, Monte Carlo
localization for mobile robots, in: Proceedings of the
IEEE International Conference on Robotics and Automation,
Detroit, USA, 1999.

[11] M. Drumheller, Mobile robot localization using sonar, IEEE
Transactions on PAMI 9 (2) (1987) 325–332.

[12] D. Fox, W. Burgard, S. Thrun, Markov localization for
mobile robots in dynamic environments, Journal of Artificial
Intelligence Research 11 (1999) 391–427.

[13] W.E.L. Grimson, T. Lozano-Pérez, Localizing overlapping
parts by searching the interpretation tree, IEEE Transactions
on PAMI 9 (4) (1987) 469–482.

[14] P. Jensfelt, S. Kristensen, Active global localization for
a mobile robot using multiple hypothesis tracking, IEEE
Transactions on Robotics and Automation 17 (5) 2001.

[15] P. Jensfelt, D. Austin, O. Wijk, M. Andersson, Experiments
on augmenting condensation for mobile robot localization,
in: Proceedings of the IEEE International Conference on
Robotics and Automation, San Francisco, USA, 2000.

[16] J.J. Leonard, H.F. Durrant-Whyte, Directed Sonar Sensing
for Mobile Robot Navigation, Kluwer Academic Publishers,
Dordrecht, 1992.

[17] J.H. Lim, J.J. Leonard, Mobile robot relocation from
echolocation constraints, IEEE Transactions on PAMI 22 (9)
(2000) 1035–1041.

[18] I. Nourbakhsh, R. Powers, S. Birchfield, DERVISH, an
office-navigating robot, AI Magazine 16 (2) (1995) 53–60.

[19] S.I. Roumeliotis, G.A. Bekey, Bayesian estimation and Kal-
man filtering: a unified framework for mobile robot local-
ization, in: Proceedings of the IEEE International Conference
on Robotics and Automation, San Francisco, USA, 2000.

[20] R. Simmons, S. Koenig, Probabilistic navigation in partially
observable environments, in: Proceedings of the International
Joint Conference on Artificial Intelligence, vol. 2, 1995,
pp. 1660–1667.

[21] N. Tomatis, I. Nourbakhsh, K.O. Arras, R. Siegwart, A hybrid
approach for robust and precise mobile robot navigation with
compact environment modeling, in: Proceedings of the IEEE
International Conference on Robotics and Automation, Seoul,
South Korea, 2001.

Kai O. Arras is a Ph.D. student with the
Autonomous Systems Lab at the Swiss
Federal Institute of Technology Lausanne
(EPFL). He received his Master’s in elec-
trical engineering from the Swiss Federal
Institute of Technology Zurich (ETHZ) in
1995 and worked as a research assistant in
Nanorobotics at the Institute of Robotics
in Zurich. In 1996 he joined Prof. Sieg-
wart to help setting up the Autonomous

Systems Lab at EPFL where he is working on several aspects of
mobile robotics. His fields of interest include system integration,
feature extraction, local and global localization, SLAM, robot art
and robots for exhibitions.

José A. Castellanos was born in
Zaragoza, Spain, in 1969. He received
the M.S. and Ph.D. degrees in industrial-
electrical engineering from the University
of Zaragoza, Spain, in 1994 and 1998,
respectively. He is Associate Professor
in the Departamento de Informática e
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