
Lazy localization using the Frozen-Time Smoother

Andrea Censi and Gian Diego Tipaldi

Abstract— We present a new algorithm for solving the global
localization problem called Frozen-Time Smoother (FTS). Time
is ‘frozen’, in the sense that the belief always refers to the
same time instant, instead of following a moving target, like
Monte Carlo Localization does. This algorithm works in the
case in which global localization is formulated as a smoothing
problem, and a precise estimate of the incremental motion of
the robot is usually available. These assumptions correspond to
the case when global localization is used to solve the loop closing
problem in SLAM. We compare FTS to two Monte Carlo
methods designed with the same assumptions. The experiments
suggest that a naive implementation of the FTS is more efficient
than an extremely optimized equivalent Monte Carlo solution.
Moreover, the FTS has an intrinsic laziness: it does not need
frequent updates (scans can be integrated once every many
meters) and it can process data in arbitrary order. The source
code and datasets are available for download.

I. INTRODUCTION

Simultaneous Localization And Mapping (SLAM) is the
problem of learning maps under sensing uncertainty. In
the literature, many approaches have been proposed: they
differ by the underlying representation used (grids, features,
etc.), and the estimation algorithm employed (Particle Filters,
Extended Kalman Filters, Information Filters, etc.).

In order to make SLAM a reliable technology, the current
view in the community is that it should be modularized by
identifying independent subproblems [1], [2]. We think that
a SLAM method should address at least these three different
subproblems:

a) Incremental Mapping: The process of building a
locally consistent incremental map.

b) Loop Closure: When a mapping robot returns in a
previously mapped area, the error accumulated is typically
such that the head and the tail of the map estimate are incon-
sistent. To ensure consistency, one needs a global constraint
between the robot pose at closure time and a previous pose
in the already mapped area. Establishing if a loop is being
closed (loop detection) and finding the closure point (loop
proposal) might be considered two different subproblems.

c) Map Optimization: The process of combining local
constraints (provided by the incremental mapper) and global
constraints (provided by the loop-closure algorithm) to obtain
an overall consistent map. This phase should take into
account that some loop-closure constraints might be false
positives.

A. Censi is with the Control & Dynamical Systems department, California
Institute of Technology, 1200 E. California Blvd., 91125, Pasadena, CA.
andrea@cds.caltech.edu

G.D. Tipaldi is with Dipartimento di Informatica e Sistemistica “A.
Ruberti”, Università di Roma “La Sapienza”, via Ariosto 25, I-00185 Rome,
Italy. tipaldi@dis.uniroma1.it

Loop closure is a critical part of SLAM because it is
the only way to correct long-term errors. For very large
environments, it is similar to global localization in the
partially built map, with one particularity: as part of the
SLAM effort, a locally precise estimate of the robot motion
is usually available. The algorithm described in this paper
exploits this incremental estimate to solve global localization
in an efficient way.

A. Related work

In Gutmann et al. [3] loop closure is reduced to global
Markov localization in the partially built map. This is, of
course, extremely expensive, therefore the likelihood compu-
tation is approximated by correlation of the local map over
the occupancy grid for the global map, and such correlation is
efficiently implemented using special-purpose vectorization
operations (MMX).

In Fox et al. [4], an important problem of loop closure is
pointed out: the robot might be outside the map built so far.
They extended Bayesian localization by using a different way
of computing the likelihood, when the robot is an unknown
area. In this way, they reduced the number of false positive
in the loop detection, which lead to enforcing wrong loop
closing constraints.

In Neira et al. [5], the map is represented using features
(segments and corners). They handle loop closure explicitly
by trying to match sets of features in the local map to sets
of features in the global map. For this, they use random
samples consensus, followed by a joint compatibility test.
Clearly, if one has a feature map, the loop closure problem
can be solved easily and efficiently.

In grid-based Rao-Blackwellized particle filters (RBPF)
[6], [7], in theory one does not need to explicitly handle
loop closure. Each particle represents an hypothesis on the
trajectory: when the robot revisits parts of the old map, only
the particles with a good trajectory survive. However, in
practice, there are some complications. In RBPF the number
of particles is limited by the available memory and CPU.
This means that there are typically as few as 50-100 particles
representing all the hypotheses on the trajectory. When a
loop is closed, only very few of these particles will have
a non-zero likelihood, and therefore there will be a loss of
diversity (particle depletion). Stachniss et al. [8] addressed
the problem by actively detecting loops and then using
techniques to restore particle diversity after closing the loop.

One of the problems to consider is that loop closure cannot
be an instantaneous decision, because further data could
disprove the identified closing point. Therefore, one should
keep different hypotheses on the map topology. Haehnel

[9] extended FastSLAM with lazy data association; Grisetti
et al. [1] extended the RBPF by using an hybrid map
representation and tracking different topology hypotheses.

In Ho and Newman [2] loop closure is completely decou-
pled from the incremental map estimation. They considered
the environment as a collection of discrete scenes, for which
a distance measure can be defined. The resulting scene-to-
scene distance matrix is used to detect consistent sequences
of scenes that indicate loop closure.

B. Filtering or smoothing?

SLAM methods that handle loop closing explicitly need
a constraint between the current pose of the robot and the
old part of the map to ensure consistency of the overall map.
Several authors casted this problem as global localization on
the map built so far [3],[4], that is computing the distribution

p(xn|y0:n,m) (1)

where 0 is assumed to be the time at which the localization
procedure is activated, and m is the map built before that
time. When the pose is disambiguated, a new constraint
can be added to the global map graph. Note that (1) is a
filtering distribution: it is the estimate of the last pose based
on the past. We argue that in this context knowledge of the
smoothing distribution

p(x0|y0:n,m) (2)

would be more useful. The reason is readily explained: in
most cases, a single-shot relocalization is not reliable, and
several data are needed to disambiguate the robot position.
Given that one should consider an interval of time, it is better
to have an estimate of the robot pose at the beginning of
the interval, rather than at the end. To see why, consider
the canonical example of a loop closure in Fig. 1. Using
the filtering distribution means imposing a constraint later
in time, while using the smoothing distribution imposes it
earlier and better reduces the inconsistency in the map.

Not only the smoothing distribution is more useful, we
will show it can also be computed efficiently if a reasonably
precise estimate of the incremental robot motion is available.
An example of this is the estimate given by a scan-matcher,
which is already available at zero-cost if localization is done
as a subprocess of SLAM.

More formally, we are set to compute the distribution

p(x0|y0:n, s0:n,m) (3)

where s is an estimate of the incremental motion of the
robot: si:j , xj 	 xi. We will present three algorithms that
compute (3): the first two are slight modifications of particle
filters already studied in the literature, while the Frozen-Time
Smoother is the novel contribution of this paper.

From now on, we omit the map m from the equations,
and use the abbreviations y: = y0:n, s: = s0:n.

(a) Odometry data

(b) Enforcing B = F (c) Enforcing A = E

Fig. 1. This picture illustrates the difference between modelling loop
closing as smoothing or as filtering. Fig. 1(a) shows the the odometry data
of a robot moving in a square environment. The two paths A–B and E–F
correspond to the same corridor; assume that the robot can relocalize itself
while traversing this corridor. If one models loop closing as filtering, one
would get the constraint B = F which corresponds to the resulting map in
(b). If one models loop closing as smoothing, the result is the constraint A
= E, which results in the more consistent map in (c).

II. PARTICLE FILTERS APPROACHES

In this section we develop two approximated solutions to
the smoothing problem, as the cost of an exact implemen-
tation using Monte Carlo techniques (particle smoother) is
quadratic in the number of particles.

The first algorithm is so simple that we had to try it
before discarding it as too simple. One can use a vanilla
particle filter and remember the first pose of the particles.
Then the distribution of the first poses, weighted according
to the distribution of the last poses, can be assumed as a
crude approximation to (3). In the following, this is referred
to as Monte Carlo Smoothing v1 (MCS-1).

A less crude approach uses the assumption that the in-
cremental estimate of the pose is precise. The smoothing
distribution can be factorized as:

p(x0|y:, s:) =
∫

p(x0|xn,y:, s:)p(xn|y:, s:)dxn (4)

into the filtering distribution p(xn|y:, s:) and the inverse
informed motion model p(x0|xn,y:, s:). Intuitively, the
question “Where was I at time 0?”, is split into “Where am
I now?” and “What was my incremental motion?”.

If we make the assumption that the error of the scan
matcher is very small, we can approximate p(x0|xn,y:, s:)
as a Dirac distribution. Therefore, the integral (4) is greatly
simplified, and the target distribution is approximated by
translating the estimate at time n back in time according
to the incremental estimate s0:n.

This approach, which we call Monte Carlo Smoothing
v2(MCS-2), is sketched as Algorithm 1. The modifications
with respect to a Monte Carlo Localization is that the
incremental estimate is used, both for evolving the particles,
and to translate them back to time 0.

Algorithm 1: Monte Carlo Smoothing v2
Input:

• a “freezing time” (0)
• a set of sensor scans y0, y1, . . .
• an incremental estimate of the pose s0:k

• a map m

Output: weighted samples {〈x(i)
0|k, w

(i)
0|k〉}

for each instant k do1

for each particle i do2

sample x
(i)
k from p(xk|x(i)

k−1, sk−1:k)3

w
(i)
k ← p(yk|x

(i)
k ,m)4

// Translate back in time:

x
(i)
0|k ← x

(i)
k 	 s0:k5

w
(i)
0|k ← w

(i)
k6

end7

Resample the particles according to wk8

end9

Algorithm 2: Frozen-Time Smoother
Input:

• a “freezing time” (0)
• a set of sensor scans y0, y1, . . .
• an incremental estimate of the pose s0:k

• (optional) a prior for x0

Output: a grid estimate of p(x0)

Create the reference normal-map refMap1

Initialize the belief bel to the prior p(x0)2

for some yk, in arbitrary order do3

Create a local normal-map localMap from scan yk4

p(x0|yk)← ght(refMap, localMap, ŝ0:k)5

bel ∗= p(x0|yk)/p(x0)6

end7

Function ght(refMap, localMap, ŝ)

for 〈pi, αi〉 ∈ localMap do1

for 〈pj , αj〉 ∈ refMap do2

// Compute an estimate of the pose at time k

θ̂k ← αj − αi3

t̂k ← pj −R(θ̂k) · pi4

x̂k ← 〈t̂k, θ̂k〉5

// Use the displacement ŝ and the estimate x̂k

// to compute the pose at time 0

x̂0 ← x̂k 	 ŝ6

// Add a vote for x̂0

buffer [x̂0] ++7

end8

end9

return buffer10

III. THE FROZEN-TIME SMOOTHER

For this algorithm to work, we need two assumptions. The
first is that an estimate of the incremental robot motion is
available, roughly precise during the time it takes to localize.

The second assumption is that a fast way to compute a
‘translated’ likelihood is available. In this paper, we use a
Generic Hough Transform (GHT)-like [10] algorithm, whose
input is raw data. If one wants to use features, a completely
equivalent algorithm that could be plugged here is the one
described by Paz et al. [11].

If the two assumptions hold, we can find a particularly
simple factorization of the target distribution. The sensor data
yk can be considered independent when conditioning on both
the initial state x0 and the incremental motion sk:0:

p(x0|y:, s:) ∝ p(x0)
∏
k

p(yk|x0, s0:k) (5)

Dis-integrate p(yk|x0, s0:k) with respect to xk to obtain

p(x0|y:, s:) ∝ p(x0)
∏
k

∫
p(yk|xk)p(xk|x0, s0:k)dxk (6)

If one approximates p(xk|x0, sk:0) by a Dirac distribution
p(xk = a|x0 = b) ' δ(b	 a− sk:0), then one can solve the
integral in (6) and obtain

p(x0 = a|y:, s:) ∝ p(x0 = a)
∏
k

p(yk|xk = a⊕ s0:k) (7)

The right hand side is a product of ‘translated likelihoods’:
each likelihood at time k is translated by the motion s0:k.
In short, because the incremental estimate is available and
is precise, we can compute the likelihood at time 0 very
efficiently.

FTS uses a three-dimensional (x, y, θ) grid as the repre-
sentation of the belief, at the freezing time 0. The grid is
used essentially as a voting space, therefore its resolution is
relatively unimportant (in the experiments, we set the reso-
lution to 1m, 30deg). The grid will represent in turn p(x0)
(prior), p(x0|y0), p(x0|y0:1), etc. Note that the scans can
be integrated in arbitrary order, and some can be postponed
or skipped altogether.

A. Translated likelihood computation by GHT

The map representation is contingent on using the GHT
for computing the likelihood. Points are sampled from the
surfaces in the environment, and for these points the surface
orientation is estimated. The result is a ‘normal map’: a
series of tuples 〈pj , αj〉 where p ∈ R2 is a point on the
environment surfaces and αj is the direction of its normal.
An example of such a map is shown in Fig. 2. We remark
that this is an extremely compact representation. Every scan
is converted in the same way to a local normal map. The local
and the global normal map are passed to the GHT algorithm.

The GHT creates hypotheses by considering all possible
correspondences between the local and normal map points.
These hypotheses (can also be thought as ‘votes’) are accu-
mulated in a grid. At the end of the computation, one can
assume that this is an approximation to p(xk|yk).

More in detail, if the i-th point of the local map corre-
sponds to the j-th point on the global map, then the pose of
the robot must be x̂k =(t̂k, θ̂k), where t̂k and θ̂k are given
by:

θ̂k ← αj − αi (8)

t̂k ← pj − R(θ̂k) pi (9)

And now to the trick that makes everything work: because
we know the motion the robot did from x0 to xk, we can
compute directly p(x0|yk). In the GHT loop, we simply
translate x̂k back by s0:k, to obtain the hypothesis for x̂k:

x̂0 ← x̂k 	 ŝ0:k (10)

After the distribution p(xk|y0) has been computed, this new
information is integrated in the belief by a simple multipli-
cation, according to (7). That’s it: FTS can be described in a
few lines of text (Algorithm 2).

B. On the use of a grid

FTS uses a three-dimensional grid, but no expensive
operation is performed on the grid. Compare with using
plain Markov localization, in which one has to perform a
convolution on the grid (prediction step), and compute the
likelihood for every cell (update step). Also note that Markov
Localization would need small cells, or else it would make
little sense to compute the likelihood for a 1m × 1m cell.

Instead, FTS’s grid can be as coarse as the filter designer
wants. The cell size does not impact the speed of the GHT
step1. The cost of weighting the grid by the likelihood does
depend on the grid resolution, but this cost is, in practice,
negligible with respect to the GHT step.

Moreover, the grid representation is easier to handle than
particle distributions. The problem with particles is that they
tend to concentrate on small parts of the state space after
few observations. If one uses too few particles to bootstrap
the filter, it is likely that no particle will be near the true
solution: in few steps the distribution will suffer from particle
depletion. In actual implementations, this problem must be
mitigated by either using a particularly relaxed likelihood, or
by injecting new particles in the distribution.

C. On the laziness of FTS

Both the PFs algorithm rely on a filtering stage which
implies frequent integration of the observations. On the
contrary, FTS can integrate observation “distant” in time, as
long the scan-matcher is sufficiently precise.

Moreover, in FTS the scans can be processed in arbitrary
order: the factorization in (7) is, of course, commutative.
While the typical case would be to integrate scans as they are
available, there is much freedom here. One can skip scans,
or procrastinate and postpone some, if there are not enough
computational resources at the moment. For the experiments,
we integrated one scan every 5m and simply discarded the
others.

1If one assume the software is running on an ideal Von Neumann machine
with O(1) memory access.

Thhe integration order being arbitrary hints to the fact
that FTS has the same “consideration” for every scan. This
in contrast with any PF, where the initial observations are
more important than the last, as the first scans essentially
choose which part of the state space will be explored.

IV. EXPERIMENTS

We chose two logs from the Radish2 repository. The first
was collected in an Intel building in Seattle. This is a build-
ing, of size 30m×30m, with office rooms, many of which are
very similar. Some are cluttered with object/people, and there
are also curved surfaces. In such environment, the typical
situation is that there are many initial hypotheses that gets
quickly disambiguated.

The second log was collected in the Aces building at the
University of Texas in Austin. This is the typical ambiguous
situation: in this 60m×60m environment, there is a symmetry
– a central room, from which four similar corridors depart,
with other feature-less corridors around. In this case, the
typical situation is that a filter must keep a relatively small
number of hypotheses (2 or 4) for a long time, until there is
enough data to completely disambiguate the pose.

We used GMapping3 to process the logs, and we obtained
two sets of data: the final SLAM result, and an incremental
scan-matching estimate. The SLAM result was used as the
map input m to the algorithms, from which the PFs would
create an occupancy grid, and FTS creates the normal map.
The scan-matching result was split into multiple chunks, with
each being an independent experiment. In each chunk, the
robot traveled for about 30m. In total, we obtained 20 chunks
for Aces and 40 for Intel. Each method was given the global
map and one scan-matching chunk, and had to guess where
the robot started.

FTS’s parameters were chosen as follows. The normal map
has a resolution of one point every 0.2m – this results in
about 4000 points in the aces environment. The belief grid
has a resolution of 1m x 1m x 30deg. We integrate a scan
every 5m, and discard the others.

As for the PFs, the occupancy grid has a resolution of
0.05m, the number of particles is 10000 (sufficient but not
excessive for the environments considered. The scans are
integrated every 0.5m or 0.5rad, whichever comes first.

The most natural performance measure is the distance
between the maximum-likelihood pose estimated by the
method, and the true pose. This is a quick measure that
indicates whether the method has converged near the true
solution. Note, however, that this distance measure could be
misleading in ambiguous situations. For example, as can be
seen in Fig. 3, there are three cases in which FTS cannot
disambiguate the pose by considering only one scan every
5m, simply because there is not enough information. In those
cases, the ‘true’ pose is actually the second highest peak of
the distribution, but this cannot be seen by considering only
the distance measure. Therefore other statistics are needed.

2http://radish.sourceforge.net/
3http://openslam.org/

Normal map FTS uses a normal map as the environment
representation (left).
FTS’s state (A, D, G, H) is the belief on the first
pose of the robot, at the ‘freezing time’ 0.
Thanks to the knowledge of the scan-matcher
distribution, scans can be integrated very
infrequently (10m apart in this example).
(A) – It is not uncommon for FTS to guess in
one-shot: the true robot pose is indicated by

a marker, and the red square is the peak of the
distribution.
(B,C) – The vanilla GHT algorithm computes
p(xk|yk). Our slight modification computes
p(x0|yk), based on the scan-matcher result.
(D) – After integrating two scans, the pose is
pretty much disambiguated. However, it takes
another two integrations of scans (G, H) for the
belief to go to zero in the other parts of the state
space.

Belief: p(x0|y0)
~nA p(x1|y1)

~nB p(x0|y1)
~nC Belief: p(x0|y0:1)

~nD

p(x2|y2)
~nE p(x0|y2)

~nF Belief: p(x0|y0:2)
~nG Belief: p(x0|y0:3)

~nH

Fig. 2. Example of Frozen-Time Smoother behavior.

To compute the following two measures in a consistent
way, we converted the PF distribution to a grid distribution
with the same resolution as the grid used for FTS.

Another measure – less intuitive than the distance, but
more correct – is the estimated likelihood for the true pose.
That is, if each method estimates p(x0 = x|y:, s:) = f(x),
we consider the score s = log f(x0), where x0 is the true
pose. It can be shown that the score is an approximation to
the KLD distance between the belief and the true distribution.
In Fig. 3, we see that the score is high, even in the cases
for which the first peak is not the true pose. In Fig. 4, there
is one case in which FTS’s distance is high and the score
is low: this is a genuine failure, caused by a corresponding
failure of the scan-matcher during the chunk (GMapping,
employing a RBPF, can afford to have a non particularly
robust scan matcher).

It is interesting to note that the score values are similar
among the three methods: this reinforces our belief that they
are computing the same distribution, albeit in completely
different ways.

A measure that describes the character of the method is
the entropy of the estimated distribution. The entropy for
the PFs quickly goes to zero, as particles tend to concentrate
in small areas of the state space. MCS-1 has a lower entropy
than MCS-2, as the particles do not “move” within the state
space. Instead, for FTS, the distribution is very smooth and
non-zero practically everywhere. This gives a very high value
of entropy. Note, however, that large values of entropy do not

imply bad precision. In fact, as can be seen by comparing the
distance and entropy graphs, for the first step, the entropy is
high even when FTS did a one-shot localization.

Finally, we do some consideration on the efficiency. On
an Intel Core 2 Duo, with 2.0GHz and 4Mb of cache, an
iteration of FTS needed about 1.2s, while the PFs took about
2.1s. In these experiments, FTS was fed about one fifth
of the data fed to the PFs. Therefore, we observed about
an order of magnitude gain in efficiency. Note, however,
that this kind of benchmark is highly dependent on the
implementation and the parameters used. For the PFs, we
used some old, well-honed source code with all the tricks we
know for a particularly efficient and robust implementation.
For FTS, we did the straightforward naive implementation of
Algorithm 2. We are particularly happy about these numbers,
as FTS is already quite efficient, and there is a lot of space
for improvement.

V. CONCLUSIONS AND FUTURE WORK

We presented an algorithm, called Frozen-Time Smoother,
which can efficiently solve the global localization problem
when it is formulated as a smoothing problem, and a precise
incremental estimate of the robot motion is available. These
assumptions hold when when global localization is used for
loop closing in SLAM,

We compared the FTS with the closest technique avail-
able in the literature. The experiments suggest that a naive
implementation of FTS is more efficient than an extremely

FTS MCS-1 MCS-2 Aces

Via the Radish log repository —
thanks to Patrick Beeson.

Distance

0 10 20 30
0

20

40

60

0 10 20 30
0

20

40

60

0 10 20 30
0

20

40

60

Score

0 10 20 30
−15

−10

−5

0

0 10 20 30
−15

−10

−5

0

0 10 20 30
−15

−10

−5

0

Entropy

0 10 20 30
0

50

100

0 10 20 30
0

5

10

0 10 20 30
0

5

10

Fig. 3. Results for the Aces environment. In all the plots, the x axis measures the linear distance along the chunck in meters; each chunk is about 30
meters long. The red dots are individual samples; the black bold line is the samples average.

FTS MCS-1 MCS-2 Intel

Via the Radish log repository —
thanks to Dirk Hänhel.

Distance

0 10 20 30
0

20

40

60

0 10 20 30
0

20

40

60

0 10 20 30
0

20

40

60

Score

0 10 20 30
−15

−10

−5

0

0 10 20 30
−15

−10

−5

0

0 10 20 30
−15

−10

−5

0

Entropy

0 10 20 30
0

20

40

0 10 20 30
0

5

10

0 10 20 30
0

5

10

Fig. 4. Results in the Intel environment.

optimized state-of-the-art Monte Carlo filter working under
the same assumptions.

Moreover, it has several other nice properties. The grid
representation is efficient and does not have the common
problems of particle methods, like overconfidence and the
need of a frequent update. Moreover, FTS has an intrinsic
laziness, as it does not need frequent updates and it can
process data in arbitrary order.

Source code, datasets and animations are available at the
website http://purl.org/censi/2007/fts.

REFERENCES

[1] G. Grisetti, G. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi, “Fast
and accurate SLAM with Rao-Blackwellized particle filters,” Robots
and Autonomous Systems, 2007.

[2] P. Newman, D. Cole, and K. Ho, “Outdoor SLAM using visual
appearance and laser ranging,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation, Orlando, FL, USA, 2006.

[3] J.-S. Gutmann and K. Konolige, “Incremental mapping of large cyclic
environments,” in Proc. of the IEEE Int. Symposium on Computational
Intelligence in Robotics and Automation (CIRA), Monterey, CA, USA,
1999, pp. 318–325.

[4] D. Fox, J. Ko, K. Konolige, and B. Stewart, “A hierarchical bayesian
approach to the revisiting problem in mobile robot map building,” in
Proc. of the Int. Symposium of Robotics Research, Siena, Italy, 2003.

[5] J. Neira, J. Tardos, and J. Castellanos, “Linear time vehicle relocation
in SLAM,” in Proc. of the IEEE Int. Conf. on Robotics & Automation,
2003, pp. 427–433.

[6] D. Hähnel, W. Burgard, D. Fox, and S. Thrun, “An efficient FastSLAM
algorithm for generating maps of large-scale cyclic environments from
raw laser range measurements,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, Las Vegas, NV, USA, 2003.

[7] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with Rao-Blackwellized particle filters,” IEEE Transac-
tions on Robotics, 2006.

[8] C. Stachniss, D. Hähnel, W. Burgard, and G. Grisetti, “On actively
closing loops in grid-based FastSLAM,” Advanced Robotics, vol. 19,
no. 10, pp. 1059–1080, 2005.

[9] D. Hähnel, W. Burgard, B. Wegbreit, and S. Thrun., “Towards lazy
data association in SLAM,” in Proc. of the Int. Symposium of Robotics
Research, Siena, Italy, 2003, pp. 421–431.

[10] D. H. Ballard, “Generalizing the Hough transform to detect arbitrary
shapes,” Pattern Recognition, vol. 13, no. 2, pp. 111–122, 1981.

[11] L. Paz, P. Piníes, J. Neira, and J. Tardós, “Global localization in SLAM
in bilinear time,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, Edmonton, Canada, 2005.

