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Abstract—Detecting and tracking people and groups
of people is a key skill for intelligent vehicles, interac-
tive systems and robots that are deployed in humans
environments. In this paper, we address the problem of
detecting groups of people from learned social relations
between individuals with the goal to reliably track
group formation processes. Opposed to related work,
we track and reason about multiple social grouping
hypotheses in a recursive way, assume a mobile sensor
that perceives the scene from a first-person perspec-
tive, and achieve good tracking performance in real-
time using RGB-D data. In experiments in large-scale
outdoor data sets, we demonstrate how the approach is
able to track groups of people with varying sizes over
long distances with few track identifier switches.

Index Terms—Service robots, robot sensing systems,
computer vision, social factors

I. Introduction

Tracking groups of people is an important skill for
surveillance systems, intelligent vehicles and robots that
operate in populated environments. Empirical research has
found that up to 70% of pedestrians walk in groups [1].
Knowledge about groups, their position, size, motion state,
and social activities can enable systems to gain a deeper
understanding of human environments and to provide
better services to users. Examples include multi-party
human-computer interaction or socially compliant robot
navigation among groups of people. The goal in this work
is tracking groups of people from a mobile sensor in a
first-person (within-scene) perspective. Unlike stationary
overhead cameras in surveillance applications, this is a
challenging scenario because with sensors at human eye-
level, people in groups are occluded more frequently and
are harder to detect and track reliably as individual
targets. In addition to the estimates on social relations
between people, group tracking also allows to improve
person-level tracking by feeding back the grouping infor-
mation, for example, to better deal with lengthy occlusions
of individual targets.

The problem of tracking groups of people has been
addressed using image data as well as 2D range data
from on-board laser scanners. To our knowledge, this
work is the first to use RGB-D data to this end. We
extend an approach by Luber et al. [2] based on a multi-
model multi-hypothesis group tracker with a mechanism
to maintain consistent group IDs across multiple group

Fig. 1. Groups of four (blue) and two (pink) persons being tracked by
our multi-model hypothesis tracker in RGB-D data from a crowded
pedestrian area.

splits and merges. The approach tracks group formation
processes explicitly and allows for the representation of
multiple social grouping hypotheses at the same time. This
is achieved by extending a multiple hypothesis tracker
(MHT) by an alternating model hypothesis step. We con-
duct experiments on unscripted, real-world data captured
with a mobile platform equipped with two RGB-D sensors
in a crowded pedestrian zone.

The paper is organized as follows: After the discussion of
related work in Sec. II, we present person-level detection
and tracking in Sec. III. In Sec. IV, we describe group
detection, the multiple group model hypothesis tracker,
and the method to determine consistent group identifiers
across splits and merges. Experimental results are given in
Sec. VI, and Sec. VII concludes the paper.

II. Related Work

While tracking individual people is a highly studied
problem in target tracking, computer vision and robotics,
the problem of tracking groups of people is relatively little-
explored. However, recently, the number of related works is
increasing, also due to activities in the visual surveillance
and social computing communities.

We first review the literature on RGB-D based people
detection and tracking from a first-person perspective.
Further below, we discuss related works on group-level
tracking.



A↵ordable RGB-D cameras have become available in the
last years and are gaining popularity in many close-range
sensing scenarios for intelligent cars, interactive systems
and robots. As opposed to stereo cameras, they do not
require expensive disparity map calculations and can be
made more robust against illumination changes.

Spinello and Arras [3] propose an RGB-D person de-
tector that probabilistically fuses the outputs of a HOG
classifier (histogram of oriented gradients) on the RGB
image and a HOD classifier (histogram of oriented depths)
on the depth image. Luber et al. [4] integrate this detector
into a multi-hypothesis tracking framework and combine
it with a target-specific on-line detector based on RGB-
and D-based appearance features.

Munaro et al. [5] present a person detection and tracking
framework in RGB-D, where the detector uses a height
map-based ROI extraction mechanism and linear SVM
classification using HOG features. For tracking, they per-
form global nearest-neighbour data association and use
a joint likelihood that also incorporates an appearance-
based online term calculated from histogram features.

Recently, Jafari et al. [6] also use a depth-based ROI
extraction mechanism, but only employ HOG in the RGB
image for ROIs at distances of over 7 meters. At close-
range, a normalized-depth template is evaluated on the
depth image at locations where the height map shows
local maxima corresponding to heads of people. For per-
son tracking, trajectory growing is performed with a bi-
directional EKF in a multi-hypothesis tracker.

For group detection and tracking, we can distinguish
three lines of work:

The first one, typically carried out in the social com-
puting community, is concerned with the understanding
of social situations [7, 8]. Using interpersonal distance
and relative body orientation, Groh et al. [7] study social
situation recognition of standing people from static cam-
eras. Similarly, Cristani et al. [8] address the problem of
social relation recognition in conversation situations. Using
interpersonal distance only, they estimate pairwise stable
spatial arrangements called F-formations.

A second group of works addresses social relation recog-
nition in still images and video. Wang et al. [9] extract
social relations from photographs. They use the knowledge
that social relations between people in photographs influ-
ence their appearance and relative image position. From
the learned models, they are able to predict relationships
in previously unseen images. Social relations between film
actors in video are estimated by Ding et al. [10]. A social
network graph with temporal smoothing is learned using
actor occurrence patterns. The approach also allows for
changes in social relations over time. Choi et al. [11] recog-
nize atomic activities of individuals, interaction activities
of pairs, and collective activities of groups, jointly, using
an energy maximization framework.

A third line of works, most related to our context, is
concerned with detecting and tracking groups from image

or range data. Yu et al. [12] address the problem of
discovery and analysis of social networks from individuals
tracked in surveillance videos. A social network graph is
built over time from observations of interacting individ-
uals. Social relations between persons in overhead video
data are recognized by Pellegrini et al. [13]. They use
approximate inference on a third-order graphical model
to jointly reason about correct person trajectories and
group memberships. Based on learned statistical models
on people’s behavior in groups, they also perform group-
constraint prediction of motion. Leal-Taixé et al. [14]
model social and grouping behavior from tracked indi-
viduals in video data using a minimum-cost network flow
formulation. Qin et al. [15] improve tracking of individuals
by considering social grouping in a tracklet linking ap-
proach. Using large numbers of hypothetical partitionings
of people into groups, solutions are evaluated based on the
geometrical similarity of trajectories of individuals with
the hypothesized group.

Lau et al. [16] track groups of people in 2D range
data and from a mobile robot. A multi-model hypothesis
tracking approach is developed to estimate the formation
of tracks into groups that split and merge. Groups are
collapsed into single states loosing the individual person
tracks. The same tracking approach is taken by Luber et
al. [2] but, unlike Lau et al., they hypothesize and track
social groupings as collections of individual person tracks
with group a�liation estimates. These estimates are then
used to improve person-level tracking by adapting per-
target occlusion probabilities and predicting the motion
of occluded group members through a constrained particle
filter.

III. Person Detection and Tracking in RGB-D

A. Multi-Sensor Person Detection in RGB-D

For person detection in RGB-D from a first-person
perspective, we use the Combo-HOD detector as presented
in [3], a GPU-accelerated combination of HOG and HOD
(histogram of oriented depths). HOD locally encodes the
direction of depth changes and follows the same princi-
ple as HOG, while operating on the depth image. After
subdividing the search window into cells, a descriptor is
computed for each cell, the oriented depth gradients are
collected into 1D histograms, and cells are grouped into
blocks of four which then get normalized. The resulting
HOD features are used to train a soft linear SVM. A
depth-informed scale-space search is used to accelerate the
sliding-window-based detection process.

For the sake of generality, we consider sensory setups
with more than one RGB-D sensor. Thus, to fuse informa-
tion from multiple sensors (such as the setups in [3, 5]),
we use an individual person detector instance per sensor
but combine the output of both detectors before tracking
(Fig. 2). This has the advantage that the existing single-
image detector can be readily used without having to
fuse the RGB-D raw data which would raise the issues of



Fig. 2. Left and middle: RGB and depth images of left and right RGB-D sensor with HOG detections shown in red and HOD detections in
blue. Right: Point cloud with persons detected by the left (green) and right (red) sensor. Detections where only one of the two detectors has
fired are semitransparent. Overlapping detections at the common sensor boundary are merged using non-maxima suppression. Grey circles
denote the resulting fused detection candidates.

image mosaicing or point cloud registration. Furthermore,
a practical advantage is that each detector can be run
on a single CPU core or graphics card allowing for easy
parallelization. In case of a small overlap of the field of
views between adjacent sensors (as in the case of our
setup), we can detect people right at the center between
both sensors. In a non-maxima suppression step, we finally
consolidate duplicate detection hypotheses that are seen
by both sensors.

B. Person Tracking using a MHT

Person detections are tracked using a multiple hypothe-
sis tracker (MHT) due to Reid [17] and Cox et al. [18]. To
summarize, the approach generates hypotheses about the
state of the world by taking into account all statistically
feasible assignments between measurements and tracks, as
well as all possible interpretations of measurements as false
alarms or new tracks, and of tracks as matched, occluded
or deleted. At time step t, a hypothesis⌦ t

i represents
one possible set of such assignments, and measurement
and track interpretation labels. We call Z(t) the set of
detected persons at step t,  i(t) the predicted track-
to-measurement assignments and Zt the aggregated set
of all measurements up to t. Given a parent hypothesis
⌦t�1

l(i) with index l(i) to accommodate for pruning, and
new incoming measurements Z(t), the MHT creates new
assignment sets  i(t), each of which gives rise to a new
child hypothesis branching o↵ from its parent. To prune
the resulting exponentially growing hypotheses tree, a
probability is assigned to each hypothesis that is calculated
in a recursive fashion using a normalizer ⌘, the measure-
ment likelihood, the assignment set probability and the
probability of the parent hypothesis as shown in [17]:

p(⌦t
i | Zt) = ⌘ · p(Z(t) |  i(t),⌦

t�1

l(i) ) · (1)

p( i(t) | ⌦t�1

l(i) , Z
t�1) · p(⌦t�1

l(i) | Zt�1).

For pruning, we use the multi-parent k-best branching
according to Murty [19] and N -scan back pruning [18].
A standard Kalman filter with a constant-velocity motion
model is used to predict the state of person tracks.

Particularly with a sensor in a first-person perspec-
tive, occlusions and self-occlusions of persons and group

Fig. 3. A social network graph between person-level tracks. Strong
social relations (indicating a group a�liation) are shown in green,
weak relations in red. The relation probabilities are determined
by a probabilistic SVM trained on 3D motion indicator features,
and are incorporated into the group model probability (eqn. 2).
The semi-transparent person is occluded but still considered during
construction of the social network graph as it might reappear.

members are frequent and may last for extended peri-
ods in time. We found that the MHT with its ability
to disambiguate origin uncertainty by delaying decisions
until su�cient information has arrived gives good levels of
robustness with respect to these events.

IV. Group Detection and Modeling

A. Group Detection

We detect groups by constructing and pruning a social
network graph between all current targets whose edges
denote pairwise social relation probabilities.

Social relation probabilities Ri,j between person track
i and j, labelled as “socially related” or “not socially
related” in ground truth training data, are calculated using
a probabilistic support vector machine (SVM) classifier
[20] trained on coherent motion indicators. These are
motion-related features that were found to indicate group
a�liation between people in large-scale empirical exper-
iments in crowd behavior analysis and social science [1].
Concretely, coherent motion indicators consist of relative
spatial distance, di↵erence in velocity and di↵erence in
orientation of two given tracks.

All edges of the graph below a threshold of 0.5 are
discarded and the remaining connected components are
considered to be socially related, and thus form a group.
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Fig. 4. An example hypothesis tree with an intermediate tree level
that corresponds to a group model hypothesis step. For each of
the k person-level data association hypotheses in each step, the l
most probable group model hypotheses are generated that postulate
di↵erent group continuation, merge and split events. The green
borders indicate the maximum probability hypotheses, persons with
the same color are in the same group.

The threshold was chosen because it retains pairwise
social relation candidates above chance. Figure 3 shows an
example social network graph from real-world data, where
the edges with a strong relation (larger than the threshold)
are shown in green.

Clearly, using coherent motion indicators as features
to predict group a�liations implies the rather simplistic
definition of “groups” as collectives of individuals that are
spatially close and share a common motion goal. However,
note that this group detection method scales with more
available cues such as age, gender, body pose or other
attributes that may indicate membership of a social group.

B. Group Model Generation

People undergo complex group formations and our goal
is to track those formation processes over time. We use
merge, split and continuation events to model the dynamic
nature of group formations. The events are treated as
binary operations in the sense that in a single time step, a
group may split into only two groups and only two groups
may merge into one group. This is a weak assumption even
in the case when an entire group enters the sensor field of
view at once: single-person groups will be initialized from
the new tracks and after their Kalman filters have reached
steady state after 4–5 cycles, the single-person groups will
correctly merge into one group.

A group Gj becomes part of the set of merge candidates
Mi of group Gi when the corresponding two components
in the social network graph become connected (above the
probability threshold of 0.5). Likewise, when two formerly
connected components become disconnected, the pair of
sub-groups G0

i,G00
i is added to the set of split candidates

Si belonging to group Gi. Note that, although the chosen
threshold is just above chance, this will not cause oscilla-
tions between merge and split because the social relation
probabilities (edge weights) also influence the group model

data likelihood term that will be discussed shortly. Finally,
a group belongs to the set of continuation candidates C if
it continues as is, without being involved in any split or
merge event. C and all Mi, Si are re-initialized every cycle
for each single parent data association hypothesis.

A group model M(t) at time t represents the cur-
rent group formation state, which has evolved over time
through continuation, merge and split events of all groups
in the scene. Formally, M(t) is a partitioning of the
set of all tracks at time t into groups. The multi-model
hypothesis extension of the MHT now consists in a model
hypothesis step interleaved with the regular observation-
to-track data association step (Fig. 4). In each model hy-
pothesis step, one or multiple group models are generated
for each data association hypothesis, reflecting di↵erent
possible evolutions of the parent group model M(t� 1)
that are feasible given the social network graph at time t.

C. Group Model Probability

To generate and prune group model hypotheses, we
require a model for their probability. The a priori probabil-
ities of the group formation events continuation pC , split
pS , and merge pM , are learned from annotated real-world
data sets – like [16, 2]. We assume continuation, merge
and split events to be independent. Then, the probability
of a given group model M(t) at step t follows from the
a priori probabilities of the group formation postulated
by the model and from the data-driven likelihoods in the
social network graph at time t. Concretely, the probability
of group model M(t) conditioned on its parent hypothesis
⌦t�1 is

p(M(t) | ⌦t�1) =
Y

Gi2C
pC pGi

C

| {z }
continuations

· (2)

Y

Gi2C
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i,G

00
i 2Si
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00
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pGi
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where C is the complement of the set C of all continued
groups for the current parent data association⌦ t�1.
As can be seen in Eq. 3, the probability for a split

of group Gi into sub-groups G0
i and G00

i depends on the

strongest social relation between these groups, RG0
iG

00
i

max

.
Likewise, the probability for a merge between two groups



Fig. 5. Left: Two groups that (wrongly) merge into one group,
and then split again. Without the group identifier lookup described
in Sec. V-A, one of the groups undergoes an ID switch during the
split (shown as di↵erent trace color). Right: With our extension, the
previous IDs are restored.

Gi and Gj is equal to the highest probability for a person-
to-person relation between these groups RGiGj

max

. The prob-
abilities RG0

iG
00
i

max

and RGiGj
max

are readily available as SVM
output probabilities in the social network graph.

Here, we extend the approach of [16, 2] by the data-
driven probability for continuation events pGi

C . The like-
lihood for continuation scales inversely with the highest
probability for a non-continuation of that group (if, for
instance, p

GiGj

M = 1.0, then pGi
C must be 0.0). Without this

term, continuation events are overly biased which causes
the tracker to follow splits and merges with unnecessary
delays.

V. Tracking Groups of People using a
Multi-Model MHT

To enhance the MHT with the ability to reason about
group models, the hypothesis tree is extended by an
intermediate tree level to hypothesize about possible group
formation processes. Group model hypotheses spring o↵
from data association hypotheses in each step (Fig. 4).
Each group model hypothesis, in turn, will give rise to a
number of child data association hypotheses conditioned
on that particular group model. To limit growth of the
tree, we perform multi-parent k-best branching and re-
strict the number of possible group models to the l < k
most probable models.

The incorporation of the group model probability in Eq.
2 into the recursive update rule for the probability of a
hypothesis⌦ t

i can be shown to be

p(⌦t
i | Zt) = ⌘ · p(Z(t) |  i(t),M(t),⌦t�1

l(i) ) (4)

· p( i(t) |M(t),⌦t�1

l(i) , Z
t�1)

· p(M(t) |⌦t�1

l(i) ) · p(⌦
t�1

l(i) | Zt�1).

A. Maintaining Group Identities

One of the goals of tracking is to maintain correct
track identities despite misdetections, occlusions or mea-
surement origin uncertainty. To achieve this goal in the
case of group tracking, we extend [2] and define a set
of maintenance rules for group track identifiers (ID) that
are robust against identifier switches on the individual
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Fig. 6. Left: The ROS-based architecture of our tracker implemen-
tation consists of two separate RGB-D detectors, a module which
merges their detection hypotheses, the multi-model MHT for person
and group tracking, and several custom RViz visualization plugins.
Right: Our mobile data capture platform equipped with wheel en-
coders for odometry, a laser range finder, two RGB-D sensors, and a
laptop was used to capture the dataset in a urban pedestrian area.
The vertical setup of two Asus Xtion Pro RGB-D sensors is shown
enlarged.

person track level. Group IDs need to be consolidated
when groups undergo merge or split operations.

Concretely, for merge events, we continue with the ID
of the larger group – following a “merge-into” policy. If the
groups are of the same size, we continue with the ID of the
older group. This helps to maintain group ID consistency
across identity switches of its member tracks, as long as
not all person tracks undergo an ID switch at the same
moment.

For split events, we maintain the previous social group-
ings in a memory including their assigned group IDs. This
allows to reassign the correct ID when a group merges into
another and then splits o↵ again. The strategy is useful to
reidentify sub-groups that wrongly merged with a di↵erent
group, for example when groups come temporarily close
in a narrow passage. The memory is implemented as a
map with circular bu↵er, keeping the last n group ID
assignments (with n = 1000). Fig. 5 shows the e↵ect of
our extension.

B. Group Formation Feedback into Person-Level Tracking

The information about tracked groups is fed back into
the person-level tracker by adapting the per-track oc-
clusion probabilities for group members. As shown in
[2], this can e↵ectively improve tracking performance by
reducing the number identifier switches of person track,
which, in turn, can make group tracking more robust. The
adaptation of occlusion probabilities is done using a slight
reformulation of the MHT proposed in [21], which allows
the MHT to not only reason about the interpretation of
tracks to be detected or deleted (as in [17], [18]) but
also to be occluded. The reformulation generalizes track
interpretation to an arbitrary number of labels using a
multinomial distribution.



Note that the feedback of group-level information to the
person-level tracker is possible because the multi-model
MHT generates group formation hypotheses for each new
data association hypothesis. This means that when a
best hypothesis switch occurs because new evidence has
made the current branch unlikely, the group tracker will
instantly have the best group model available which has
already evolved over time with all observations up to
time t. This would not be possible if only a global, single-
hypothesis group model had been generated.

VI. Experiments

For our experiments, we collected a sequence of 9 min-
utes, covering 300 meters of distance in an urban pedes-
trian zone in the city center of Freiburg, Germany. The
data collection platform was a child stroller equipped with
two Asus Xtion Pro Live RGB-D sensors, a SICK LMS-
500 laser range finder (not used in these experiments),
custom-built wheel encoder-based odometry, and a laptop
(see Fig. 6). The RGB-D sensors were mounted vertically
at a height of 1.4 m with about 10� of overlap, yielding
a field of view of 76� in horizontal and 57� in vertically
direction.

The sequences were recorded shortly before sunset to
reduce IR interference, which can render the depth sensors
inoperable at the cost of slightly longer exposure times.
The data have been manually annotated: they contain 298
persons in 204 groups in total, of which 130 (64%) are
individuals (single-person groups), 65 (32%) two-person
groups, and 9 (4%) groups of at least three persons. The
largest group within sensor range has 9 persons. The
average group size is 1.5 – if only groups of more than
two people are considered, the average size is 2.3 persons.

A. Modular ROS-based Architecture

The tracker is implemented in C++ under Linux. To
facilitate use of di↵erent detectors and di↵erent sen-
sors, clear separation of functionalities and easier par-
allelization, we have integrated it into a fully modular
architecture using the Robot Operating System (ROS)
middleware. Each module (one detector per sensor, the
filter that merges detections from multiple sensors, the
multi-model MHT, and the visualization) is executed in a
separate process, potentially on a dedicated CPU core, and
communicates with other modules via messages published
on di↵erent topics. Fig. 6 (left) gives an overview of our
architecture. The group tracker including RGB-D person
detection is running on a single Intel Core i7-2600 quad-
core PC at 3.4 GHz with a GeForce GTX480 graphics
card.

B. Results

Our group tracking algorithm is able to track groups of
people with varying sizes in crowded environments over
long distances with a low number of group ID switches.
Figures 7 and 8 show some exemplary situations which
our tracker is able to handle. This is partly achieved

due to the robustness of the person-level tracking, which
benefits from the incorporated group information. Also,
the probabilistic SVM based upon motion indicators al-
lows our group detection stage to discriminate between
groups passing close by each other at di↵erent velocities
or in di↵erent directions. In our real-world dataset, over a
duration of 9 minutes (9535 frames), we observed 11 group
ID switches in total for the 74 groups of size 2 or larger.

C. Runtime Performance

The person-level MHT tracker without the RGB-D
person detector reaches an average cycle time of 59 Hz
on a single CPU core of a standard PC with 100 parallel
hypotheses and 10 to 20 people visible at a time. This
rate decreases to 24 Hz for the multi-model hypothesis
group tracker, where most of the overhead is caused by
the prediction of pairwise social relations using the linear
SVM classifier and the update of the particle filters for
the curvilinear motion model used for motion prediction
of occluded group members. The memory consumption is
around 2 GB. The entire system (group-level tracking and
detector) reaches a cycle time of about 20 Hz.

VII. Conclusions

In this paper we addressed the problem of detecting
and tracking groups of people in RGB-D data. Groups
are detected from predicted social relation probabilities
between individuals and tracked using an extension of the
multi-hypothesis tracker that incorporates a group model
hypothesis step. This approach allows to recursively reason
about both, regular observation-to-track data associations
and group formation processes at the same time and
in the same probabilistic framework. We extended this
approach by new expressions for group model probabilities
and a book keeping logic to maintain stable group track
identifiers robust to sporadic identifier switches of the
underlying person tracks. The experiments demonstrate
the viability of the approach on a real-world, unscripted
outdoor RGB-D dataset collected with a mobile platform
in a busy urban pedestrian zone.

In future work, we plan to deploy our group track-
ing framework onto a robot platform with additional
backward-facing RGB-D sensors and to learn classifiers
for human attributes such as age, gender and upper body
pose. In addition to motion indicators, these cues will
enable us to estimate social relations (and hence social
groupings) more accurately, and to support data associa-
tion by target-specific appearance models.
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[1] M. Moussäıd, N. Perozo, S. Garnier, D. Helbing, and
G. Theraulaz, “The walking behaviour of pedestrian social
groups and its impact on crowd dynamics,” PLoS ONE,
vol. 5, no. 4, April 2010.



Fig. 7. Two groups – a two-person group (green) and a single-person group (blue) – are passing close-by each other, and are correctly not
merged by our tracker. The SVM-based group detection using coherent motion indicators identifies them as two distinct groups of persons.

Fig. 8. Left and middle left: The person in blue yeans (yellow track) merges into the two-person group walking in front (green). Middle right
and right: Our approach is able to track complex multi-person group formations in crowded environments from a first-person perspective.

[2] M. Luber and K. O. Arras,“Multi-hypothesis social group-
ing and tracking for mobile robots,” in Proceedings of
Robotics: Science and Systems, Berlin, Germany, 2013.

[3] L. Spinello and K. O. Arras, “People detection in RGB-
D data,” in Int. Conf. on Intelligent Robots and Systems
(IROS), San Francisco, USA, 2011.

[4] M. Luber, L. Spinello, and K. O. Arras, “People tracking
in RGB-D data with online-boosted target models,” in
Int. Conf. on Intelligent Robots and Systems (IROS), San
Francisco, USA, 2011.

[5] M. Munaro, F. Basso, and E. Menegatti, “Tracking people
within groups with RGB-D data,” in Int. Conf. on Intelli-
gent Robots and Systems (IROS), Oct 2012.

[6] O. H. Jafari, D. Mitzel, and B. Leibe, “Real-time
RGB-D based people detection and tracking for mo-
bile robots and head-worn cameras,” in Int. Conf. on
Robotics&Automation (ICRA), Hong Kong, China, 2014.

[7] G. Groh, A. Lehmann, J. Reimers, M. R. Friess, and
L. Schwarz, “Detecting social situations from interaction
geometry,” in Proc. of the IEEE Int. Conf. on Social
Computing, 2010.

[8] M. Cristani, G. Paggetti, A. Vinciarelli, L. Bazzani,
G. Menegaz, and V. Murino, “Towards computational
proxemics: Inferring social relations from interpersonal dis-
tances,” in IEEE Int. Conf. on Social Computing, Boston,
USA, 2011.

[9] G. Wang, A. Gallagher, J. Luo, and D. Forsyth, “Seeing
people in social context: recognizing people and social
relationships,” in Proc. of the European Conf. on Comp.
Vision (ECCV), 2010.

[10] L. Ding and A. Yilmaz, “Inferring social relations from vi-
sual concepts,” in IEEE Int. Conf. on Comp. Vis. (ICCV),
2011.

[11] W. Choi and S. Savarese, “A unified framework for multi-
target tracking and collective activity recognition,” in
Proc. of the European Conf. on Comp. Vision (ECCV),
2012.

[12] T. Yu, S. N. Lim, K. A. Patwardhan, and N. Krahnstoever,
“Monitoring, recognizing and discovering social networks,”
in Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2009.

[13] S. Pellegrini, A. Ess, and L. van Gool, “Improving data
association by joint modeling of pedestrian trajectories
and groupings,” in Proc. of the European Conf. on Comp.
Vision (ECCV), 2010.
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