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Abstract For robots operating in real-world environments,
the ability to deal with dynamic entities such as humans,
animals, vehicles, or other robots is of fundamental impor-
tance. The variability of dynamic objects, however, is large
in general, which makes it hard to manually design suitable
models for their appearance and dynamics. In this paper, we
present an unsupervised learning approach to this model-
building problem. We describe an exemplar-based model for
representing the time-varying appearance of objects in pla-
nar laser scans as well as a clustering procedure that builds a
set of object classes from given observation sequences. Ex-
tensive experiments in real environments demonstrate that
our system is able to autonomously learn useful models for,
e.g., pedestrians, skaters, or cyclists without being provided
with external class information.

Keywords Classification - Unsupervised learning -
Detection and tracking
1 Introduction

The problem of tracking dynamic objects and modeling their
time-varying appearance has been studied extensively in ro-
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botics, engineering, computer vision, and other areas. On
one hand, the problem is hard as the appearance of ob-
jects is ambiguous, partly occluded, may vary quickly over
time, and is perceived via a high-dimensional measurement
space. On the other hand, the problem is highly relevant in
practice—especially in future applications for mobile robots
and intelligent cars. Consider, for example, a service robot
deployed in a populated environment such as a pedestrian
precinct. Tasks like collision-free navigation or interaction
require the ability to recognize, distinguish, and track mov-
ing objects including reliable estimates of object classes,
e.g., “adult”, “infant”, “car”, “dog”, etc.

In this paper, we consider the problem of detecting, track-
ing, and classifying moving objects in sequences of pla-
nar range scans acquired by a laser sensor. We present an
exemplar-based model for representing the time-varying ap-
pearance of moving objects as well as a clustering procedure
that builds a set of object classes from given observation se-
quences in conjunction with a Bayes filtering scheme for
classification. The proposed system, which has been imple-
mented and tested on a real robot, does not require labeled
object trajectories, but rather uses an unsupervised cluster-
ing scheme to automatically build appropriate class assign-
ments. By pre-processing the sensor stream using state-of-
the-art feature detection and tracking algorithms, we obtain
a system that is able to learn and re-use object models on-
the-fly and without human intervention. The resulting set
of object models can then be used to (1) recognize previ-
ously seen object classes and (2) improve data segmenta-
tion and association in ambiguous multi-target tracking sit-
uations. We furthermore believe that the object models may
be used in various applications to associate semantics with
recognized objects depending on their classes.
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Fig.1 Six examples of relevant object classes considered in this paper.
Our proposed system learns probabilistic models of their appearance
in planar range scans and the corresponding dynamics. The classes are
denominated Pedestrian (PED), Buggy (BUG), Skater (SKA), Suitcase
(SUI), Cyclist (CYC), and Kangaroo-shoes (KAN)

2 Related work

Exemplar-based models are frequently applied in computer
vision systems for dealing with the high dimensionality of
visual input. Toyama and Blake (2002), for instance, used
probabilistic exemplar models for representing and tracking
human motion. Their approach is similar to ours in that they
also learn probabilistic transition models. As the major dif-
ferences, the range-bearing observations used in this work
are substantially more sparse than visual input and we also
address the problem of learning different object classes in
an unsupervised way. Plagemann et al. (2005) used exem-
plars to represent the visual appearance of 3D objects in the
context of an object localization framework. Kruger et al.
(2006) learned exemplar models to realize a face recogni-
tion system for video streams. Exemplar-based approaches
have also been used in other areas such as action recogni-
tion (Drumwright et al. 2004) or word sense disambigua-
tion (Ng and Lee 1996). Wren et al. (1997) introduce a peo-
ple modeling and tracking system for color images. It uses
a multi-class model of shape and color and has an explicit
background model to perform image segmentation.

There exists a large body of work on laser-based object
and people tracking in the robotics literature (Schulz et al.
2001; Fod et al. 2001, 2002; Montemerlo and Thrun 2002;
Arras et al. 2007). People tracking typically requires care-
fully engineered or learned features for track identification
and data association and often a-priori information about
motion models. This has been shown to be the case also for
geometrically simpler and rigid object such as vehicles in
traffic scenarios (MacLachlan and Mertz 2006). Cui et al.
(2006) describe a system for tracking single persons within
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a larger set of people, given the relevant motion models are
known.

The work most closely related to ours has recently been
presented by Schulz (2006), who combined vision- and
laser-based exemplar models to realize a people tracking
system. In contrast to his work, our main contribution is the
unsupervised learning of multiple object classes that can be
used for tracking as well as for classifying dynamic objects.
Ilg et al. (2003) also follow a prototype-based approach. In
contrast to this work, they explicitly align time series using
Dynamic Time Warping to perform a clustering into proto-
types.

Periodicity and self-similarity have been studied by Cut-
ler and Davis (2000), who developed a classification system
based on the autocorrelation of appearances, which is able
to distinguish, for example, walking humans from dogs.

A central component of our approach detailed in the fol-
lowing section is an unsupervised clustering algorithm to
produce a suitable set of exemplars. Most approaches to
cluster analysis (Hartigan 1975) assume that all data is avail-
able from the beginning and that the number of clusters is
given. Recent work in this area also deals with sequential
data and incremental model updates (Tasoulis et al. 2006;
Chis and Grosan 2006). Ghahramani (2004) gives an easily
accessible overview of the state-of-the-art in unsupervised
learning.

As an alternative to the exemplar-based approach, re-
searchers have applied generic dimensionality reduction
techniques to deal with high-dimensional and/or dynamic
appearance distributions. PCA and ICA have, for example,
been used to recognize people from iris images (Wang and
Han 2005) or their faces (Fortuna and Capson 2004). Re-
cent advances in this area include latent variable models,
such as Gaussian process latent variable models (GPLVMs)
(Lawrence 2005).

The approach of Wang et al. (2006), termed Gaussian
process dynamical models (GPDMs), builds on the idea that
the high-dimensional data which is observed over time ac-
tually lies on a low-dimensional manifold. They build on
GPLVMs to learn and represent the low-dimensional em-
bedding in a nonparametric way. The feasibility of this ap-
proach has been shown for the different problem of body
pose tracking from visual input.

Jenkins and Matari¢ (2004) extended Isomap (Tenen-
baum et al. 2000), which is another popular method for non-
linear dimensionality reduction, by a spatio-temporal com-
ponent which allows to model high-dimensional data that
changes over time. One of their example instantiations of
the model shows that it develops into a HMM-like structure
for clustered data.
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3 Modeling object appearance and dynamics using
exemplars

Exemplar models are representations for both, appearance
and appearance dynamics. They are a choice consistent with
the motivation for an unsupervised learning approach avoid-
ing manual feature selection, parameterized physical mod-
els (e.g., human gait models), and hand-tuned classifier cre-
ation.

This section describes how the exemplar-based models of
dynamic objects are learned. Based on a segmentation and
tracking system presented in Sect. 6, we assume to have a
discrete track for each dynamic object in the current scene.
Over time, these tracks describe trajectories that we analyze
regarding appearance and dynamics of the corresponding
objects.

3.1 Problem description

The problem we address in this work can be formal-
ized as follows. Let T = (Zy,...,Z,) be a track, ie.,
a time-indexed observation sequence of appearances Z;,
t =1,...,m, of an object belonging to an object class C.
Then we face the following two problems:

1. Unsupervised learning: Given a set of observed tracks
T ={T, Tz, .. .}, learn classes {C1, ..., Cy} of objects in
an unsupervised manner. This amounts to setting an ap-
propriate number n of classes and to learn for each class
C; aprobabilistic model p(T | C;) that characterizes the
time-varying appearance of tracks 7" associated with that
class.

2. Classification: Given a newly observed track 7' and a set
of known object classes C = {C1y, ..., C,}, estimate the
class probabilities p(C; | T) for all classes.

Note that “unsupervised” in this context does not mean that
all model parameters are learned from scratch, but rather
that the important class information (e.g. “pedestrian”, “cy-
clist”) is not supplied to the system. The underlying seg-
mentation, tracking, and feature extraction subsystems are
designed to capture a wide variety of possible object ap-
pearances and the unsupervised learning task is to build a
compact representation of object appearance that general-
izes across instances.

3.2 The exemplar model

Exemplar models (Toyama and Blake 2002) aim at ap-
proximating the typically high-dimensional and dynamic
appearance distribution of objects using a sparse set & =
{E1,..., E.} of significant observations, termed exem-
plars E;. Similarities between concrete observations and
exemplars as well as between two exemplars are specified

by a distance function p (E;, E ;) in exemplar space. Further-
more, each exemplar is given a prior probability w; = p(E;),
which reflects the prior probability of a new observation be-
ing associated with this exemplar. Changes in appearance
over time are dealt with by introducing transition probabil-
ities p(E; | E;) between exemplars w.r.t. a predefined iter-
ation frequency. Formally, this renders the exemplar model
a first-order Markov chain, specified by the four elements
M= (&, B, , p), which are the exemplar set £, the transi-
tion probability matrix B with elements b; ; = p(E; | E;),
the priors 7, and the distance function p. All these compo-
nents can be learned from data, which is one of the central
topics of this paper.

3.3 Exemplars for range-bearing observations

In a laser-based object tracking scenario, the raw laser mea-
surements associated with each track constitute the appear-
ance Z = {(«;, r,-)}ﬁ=1 of the objects, where «; is the bear-
ing, r; is the range measurement, and / is the number of laser
end points in the respective laser segment.

To cluster the laser segments into exemplars, the individ-
ual laser segments need to be normalized with respect to ro-
tation and translation. This is achieved using the state infor-
mation estimated by the underlying tracker. Here, the state
of a track x = (x, y, vy, vy)T is composed of the target po-
sition (x, y) and velocities (vy, vy). The velocity vector can
then be used to calculate the heading of the object. Transla-
tional invariance is achieved by shifting the center of gravity
of the segment to (0, 0), rotational invariance is gained from
zeroing the orientation in the same way. After normalization,
all segments have a fixed position and orientation.

Rather than using the raw laser end points of the normal-
ized segments as observations (see Schulz 2006), we calcu-
late the so called likelihood field (Thrun 2001) on a regu-
lar grid for each of them. In this model, the likelihood of
a range measurement is a function of the Euclidean dis-
tance dgyc of the respective endpoint of the beam to the
closest obstacle in the environment. The likelihood of each
cell (x, y) is then calculated using a Gaussian distribution
N (deye(x, ¥); 0, 02) with zero mean and standard deviation
o which reflects the sensor noise. In the past, likelihood
fields have been used successfully for tasks like localization
or scan matching. The main advantage of this approach is
that the distance function for observations can be defined in-
dependently of the number of laser end points in the segment
and that likelihood estimation for new observations can be
performed efficiently. We will henceforth denote the grid
representation of an appearance Z; as G;. Figure 2 shows
an example of a track, a laser segment, the normalized seg-
ment, and the corresponding grid for a walking pedestrian.
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Fig. 2 Pre-processing steps illustrated with a pedestrian observed via
a laser range finder. The fop figure shows the trajectory of the subject
moving from left to right. The segmentation and tracking system yields
estimates of target location (shown as a trace of large dots), orientation
(shown by a line), and velocity. The bottom left figure shows the raw
range readings (small dots) that are normalized such that the estimated
motion direction is zeroed. The resulting grid-based representation G
generated from the set of normalized laser end points is depicted in the
bottom right figure

3.4 Validation of the exemplar approach

The exemplar representation has a strong impact on both the
creation of the exemplar set from a sequence of appearances
and the unsupervised creation of new object classes. This
motivates a careful analysis of the choices made. To illus-
trate the practicability of the exemplar model for our pur-
pose, we analyzed the self-similarity of exemplars for tracks
of objects from relevant object classes. We define the sim-
ilarity S(Gy,, Gy,) of two observations obtained at times #;
and 1, as the absolute correlation

S(Gy, Gy == Z |Gt (x,y) — Gp(x, Y, (D
(x,y)eB

where B is the bounding box of the grid-based representa-
tions of the observations Z;, and Z;,.

Figure 3 visualizes the self-similarity matrix for 387 ob-
servations of a pedestrian. Both axes of this matrix (Fig. 3,
right) correspond to the time with #; along the horizontal
and t, along the vertical axis. The gray values that encode
self-similarity range from bright to dark. Whereas light gray
stands for maximal correlation, black represents minimal
self-similarity. The diagonal is maximal by definition as the
distance of an observation to itself is zero.

We recognize the periodic structure of the matrix, which
is caused by the strong self-similarity of the appearance
of the pedestrian over a walking cycle. This is not self-
evident as the appearance of the walking person in laser data
changes with the heading of the person relative to the sensor.
Poor normalization (e.g., because of inaccurate heading es-
timates of the underlying tracker) or a poor exemplar repre-
sentation (e.g., which is too sensitive to measurement noise)
would have removed the periodicity in the data. This illus-
trates that the normalization and the grid-based representa-
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Fig. 3 Trajectory (left) and self-similarity matrix (right) of a pedes-
trian walking in a large hallway. The track consists of 387 observa-
tions. The walking cycle of the pedestrian causes a periodic struc-
ture of the self-similarity matrix. The relative stability of this struc-
ture demonstrates how the exemplar representation is able to uncover
salient appearance properties with invariance to the subject’s heading
and to self-occlusion by the legs

tion of appearance has sufficiently good invariance proper-
ties, so that a small amount of salient appearance patterns,
i.e. exemplars, and the transitions between them are well
suited for our goal to learn and classify dynamic objects.

3.5 Learning the exemplar model

In this section, we will describe how exemplar models are
learned from observation sequences. This involves the dis-
tance function p, the exemplar set £, the prior probabilities
7;, and the transition probabilities p(E; | E;).

3.5.1 Distance function for exemplar learning

We assess the similarity of two observations Z; and Z;
based on a distance function applied to the corresponding
grid-based representations G; and G ;. Interpreting the grids
as histograms we employ the Euclidean distance for this pur-
pose:

p(Gi,Gj)= Z(Gi(x,y) —Gj(x, )2 2
(x,y)

The function is used for both, the clustering and the
Gaussian observation model in (4) described hereafter.

3.5.2 Exemplar set

Exemplars are representations that generalize object appear-
ance. To this aim, similar appearances are associated and
merged into clusters. In our current system, we apply k-
means clustering (Hartigan 1975) to partition the full data
set into r clusters P1, Pa, ..., Pr (see Fig. 4).

Strong outliers in the training set—which cannot be
merged with other observations—are retained by the clus-
tering process as additional, non-representative exemplars.
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Fig. 4 Example clusters of a pedestrian. The diagram shows the cen-
troids of two clusters (exemplars E) each created from a set of five
observations G

Such observations may occur for several reasons, e.g., when
a tracked object performs atypical movements, when the un-
derlying segmentation method fails to produce a proper fore-
ground segment, or due to sensor noise. To achieve robust-
ness with respect to such outliers, we accept an exemplar
only if it was created from a minimum number of observa-
tions. This assures that the resulting exemplars characterize
only states of the appearance dynamics that occur often and
are representative.

3.5.3 Transition probabilities

Once the clustered exemplar set has been generated from the
observation sequence, the transition probabilities between
exemplars can be learned. As defined in Sect. 3.2, we model
the dynamics of the appearance of an object using hidden
Markov models (HMM). The transition probabilities are ob-
tained by pair-wise counting. A transition between two ex-
emplars E; and E; is counted each time an observation that
has minimal distance to E; is followed by an observation
with minimal distance to E;. As there is a non-zero proba-
bility that some transitions are never observed although they
exist, the transition probabilities are initialized with a small
value to moderately smooth the resulting model.

Accordingly, the exemplar priors 7; are determined by
counting the number of contributing observations G in a
cluster. See Fig. 5 for the learned exemplar model of a pedes-
trian.

4 Classification

Having learned the exemplar set and the transition probabil-
ities as described in the previous section, both can be used
to classify tracks of different objects in a Bayesian filtering
framework. More formally, given the grid representations
(G1, ..., G,,) of the observations of a track T and a set of
learned classes C = {C1, ..., C,}, we want to estimate the
class probabilities p;(Cy | T);_, for every time step ¢. The
estimates for the last time step m then reflect the consistency
of the entire track with the different exemplar models. These
quantities can thus be used to make classification decisions.

b

.y

p(E3)=0.12
- -

Fig.5 Laser-based exemplar model of a pedestrian. The transition ma-
trix is shown in the center with the exemplars sorted counterclockwise
according to their prior probability

p(E4)=0.10

4.1 Estimating class probabilities over time

Each exemplar model M represents the distribution of track
appearances for its corresponding object class C;. Thus,
a combination of all known exemplar models MM —
{(M', ..., M"} covers the entire space of possible
appearances—or, more precisely, of all appearances that the
robot has seen so far. We construct the exemplar set £°™°
of M°™® by simply building the union set of the individual
exemplar sets £X of all models M¥. The transition probabil-
ity matrix B®™ as well as the exemplar priors 7°°™ can be
obtained from the B* matrices and the 7* in a straightfor-
ward way since we assume that the corresponding exemplar
sets do not intersect. This assumption means that objects do
not change their class during the time of observation, that
is to say, for example, that no skater takes off his shoes and
becomes a pedestrian. Therefore all cross-model transition
probabilities in B%™ are set to zero.

Given this combined exemplar model, a belief function
Bel, for the class probabilities p;(Cy | T)}_, can be updated
recursively over time using the well-known Bayes filtering
scheme. For better readability, we introduce the notation E lk
to refer to the ith exemplar of model M. According to the
Bayes filter, the belief about object classes is initialized as

Belo(EX) = p(M*Y) - =k, ()

where yrik denotes the prior probability of Elk and p(MF)
stands for the model prior, which we assumed to be uniform
(or can be estimated from a training set). Starting with G,
we now perform the following recursive update of the belief
function for every G;:

Bel(Ef)=n, - p(G, | E)) - Y " p(Ef | EY)
L

x Bez,,l(Eﬁ.). 4)

In this equation, 7, is a normalizing factor ensuring that
Bel,(Ef‘) sums up to one over all i and k, and p(G; | Ef) is
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Fig. 6 The graphs show the evolution of the probabilities of different
classes over time during an experiment in which a pedestrian is being
observed. The x-axis refers to the time . The classes that compete most
are pedestrian (solid line) and skater (dashed line). The periodicity in
the graphs corresponds to the walking or skating cycle respectively.
Both cycles have very similar appearance in the laser data. Integrated
over time, however, the pedestrian class obtains maximum posterior
probability, which corresponds to the ground truth

the Gaussian observation likelihood using the distance func-
tion in (2).

The estimates of exemplar probabilities Bel; (E lk ) at time
t can be summed up to yield the individual class probabili-
ties

pr(M* | T) =" Beli(Ef) . )

At time ¢ = m, that is, when the entire observation sequence
has been processed, the p;, (Mk | T) constitute the resulting
estimates of the class probabilities of our model. In particu-
lar, we define

MPSY(T) := argmax; py, (MF | T) (6)

as the most likely class assignment for track 7. To visualize
the filtering process described above, we give an example
run for a pedestrian track T in Fig. 6 and plot the class prob-
abilities for five alternative object classes over time.

5 Unsupervised learning of object classes

In this section, we explain how to learn a set of object classes
from scratch in an unsupervised manner. Objects of a previ-
ously unknown type will always be assigned to some class
by the Bayes filter. The class with the highest resulting prob-
ability estimate provides the current best, yet suboptimal de-
scription of the object at the time. A better fit would always
be achieved by creating a new, specifically trained model for
this particular object instance. Thus, we are faced with the
classic model selection problem, that is, choosing between
a more compact vs. a more precise model for explaining the
observed data. As a selection criterion, we employ the Bayes
factor (Kass and Raftery 1995) which considers the amount
of evidence in favor of a model relative to an alternative one.
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More formally, given a set of known classes C =
{C1,...,Cy,}) and their respective models {M!, ... M"},
let T be the track of an object to be classified. We deter-
mine the current best matching model M{(T") according
to (6) and learn a new, fitted model M"Y (T') as described in
Sect. 3.5. To decide whether T should be added to MPSS{(T")
or rather to M"W(T') by adding a new object class C™" to
the existing set of classes, we calculate the model probabili-
ties p(MPSYT) | T) and p(M™¥(T) | T) using the Bayes
filter. The ratio of these probabilities yields the factor

_ pM™N(T) | T)

= 7
pMPSY(T) | T) @

that quantifies how much better the new model describes this
object instance relative to the current best matching model.
While large values for a threshold on K favor more compact
models (fewer classes and lower data-fit), lower values lead
to more precise models (more classes, in the extreme case
overfitting the data). As alternative model selection criteria,
one could use the Bayesian Information Criterion (BIC) or
the Akaike Information Criterion (AIC), for example. How-
ever, during our experimental evaluation, the Bayes factor
yielded accurate results and, thus, we leave the comparison
to alternative choices to future work.

We now describe how to identify a threshold on K, so
that the system achieves a human-like class granularity, that
is, a balance between model precision and compactness
which is similar to how humans classify dynamic objects. To
this aim, we collected a training set consisting of instances
of the classes pedestrian, skater, cyclist, buggy, and kanga-
roo. We first compared the current best models and the fit-
ted models of objects of the same class and calculated the
factors K according to (7). Then we carried out the same
comparison with objects of different classes with randomly
selected tracks. Table 1 gives the relative number of pairs for
which different values of K—ranging from 1 to 20—were
exceeded. It can be seen that, e.g., for K > 4, all pedestrians
are merged to the same class (PED/PED), but also that there
is a poor separation (40%) between pedestrians and skaters
(PED/SKA). Given this set of tested thresholds K, the best
trade-off between precision and recall is achieved between
K > 2 and K > 4. We therefore chose K > 3.

Interestingly, this threshold on K coincides with the in-
terpretation of “substantial evidence against the alternative
model” of Kass and Raftery (1995). Note that fitting the
threshold K to a labeled data-set does not render our ap-
proach a supervised one, since no specific class labels—
which is the crucial information in this task—are supplied
to the system. This step can rather be compared to learning
regularization parameters in alternative models to balance
data-fit against model complexity.
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Table 1 Percentages of incorrectly separated (fop five rows) and cor-
rectly separated (bottom five rows) track pairs. A Bayes factor is sought
that trades off separation of tracks from different classes and associa-
tion of tracks from the same class

K>1 K=2 K>4 K=>8 K=>20
PED/PED 41% 2% 0% 0% 0%
SKA/SKA 58% 7% 0% 0% 0%
cYC/CYC 79% 32% 14% 10% 8%
BUG/BUG 78% 47% 21% 9% 1%
KAN/KAN 60% 40% 21% 11% 3%
PED/KAN 46% 3% 0% 0% 0%
PED/SKA 100% 83% 40% 10% 0%
CYC/BUG  100%  100%  100% 9%  50%
BUG/KAN  100%  100%  100%  100%  82%
CYC/KAN  100%  100%  100% 98%  92%

6 Segmentation and tracking

The segmentation and tracking system takes the raw laser
scans as input and produces the tracks with associated laser
segments for the exemplar generation step. To this end, we
employ a Kalman filter-based multi-target tracker with a
constant velocity motion model. We use this model since it
makes mild assumptions about the motion of targets of un-
known type. Practical experiments with a constant accelera-
tion motion model have been made without sensible changes
in performance.

The observation step in the filter amounts to the problem
of partitioning the laser range image into segments that con-
sist in measurements on the same dynamic objects and to
estimate their center. This is done by subtracting successive
laser scans to extract beams that belong to dynamic objects.
If the beam-wise difference is above the sensor noise level,
the measurement is marked and grouped into a segment with
other moving points in a pre-defined radius.

We compared four different techniques to calculate the
segment center: mean, median, average of extrema, and the
center of a circle fitted through the segments points (for the
latter the closed-form solutions from Arras et al. 2007 were
taken). The last approach leads to very accurate results when
tracking pedestrians, skaters, and people on kangaroo shoes
but fails to produce good estimates with person pushing a
buggy and cyclists. The mean turned out to be the smoothest
estimator of the segment center.

Data association is realized with a modified nearest
neighbor filter. It was adapted so as to associate multiple
observations to a single track. This is necessary to correctly
associate the two legs of pedestrians, skaters, and kangaroo
shoes that appear as nearby blobs in the laser range image.
Although more advanced data association strategies, motion
models, or segmentation techniques have been described in

Pgel | v

Fig.7 Top left to bottom right: Typical exemplars of the classes pedes-
trian, skater, cyclist, buggy, suitcase, and kangaroo. The direction of
motion is from left to right. Pedestrians and skaters have very simi-
lar appearance but differ in their dynamics. Pedestrians and subjects
on kangaroo-shoes have similar dynamics but different appearances
(mainly due to metal springs attached at the backside of the shoes).
We use both information to classify these objects

the related literature, we found the system effective for our
purposes.

7 Experiments

We experimentally evaluated our approach with six object
classes: pedestrian (PED), skater (SKA), cyclist (CYC),
person pushing a buggy (BUG), person pulling a suitcase
(SUI), and people on kangaroo-shoes (KAN) (see Fig. 1).
We recorded a total of 500 tracks. The sensor employed was
a SICK LMS291 laser range finder mounted at a height of
15 cm above ground. The tracks include walking and run-
ning pedestrians, skaters with small, wide, or no pace (just
rolling), cyclists at slow and medium speeds, people pushing
a buggy, pedestrians pulling a suitcase, and subjects on kan-
garoo shoes that walk slowly and fast. Note that pedestrians,
skaters, and partly also kangaroo shoes have very similar ap-
pearance in the laser data but differ in their dynamics. See
Fig. 7 for typical exemplars of each class. The implementa-
tion of our system runs in real-time on a 2 GHz single-core
CPU. The cycle time for single tracks is around 43 Hz when
sensor data are immediately available. Most time is spent in
the k-means clustering algorithm (about 65%).

7.1 Supervised learning experiments

In the first group of experiments, we test the classifica-
tion performance in the supervised case. Each training set
was composed of a single, typical track for each class in-
cluding their labels PED, SKA, CYC, BUG, SUI, or KAN.
The exemplar models were then learned from these single
tracks. Based on the resulting prototype models, we classi-
fied the remaining 494 tracks. We repeated this experiment
ten times, the averaged results are shown in Table 2.
Pedestrians are classified correctly in 96.2% of the cases
whereas 3.3% are incorrectly associated to the skater class.
A manual analysis of these 3.3% revealed that the misclas-
sification occurred typically with running pedestrians whose
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Table 2 Classification rates in percent in the supervised experiment.
Whereas the rows correspond to the ground truth, the columns contain
the obtained classification results

Classes PED SKA CYC BUG SUI KAN
Pedestrian 96.2 33 0 0 0 0.5
Skater 24 97.5 0 0.1
Cyclist 0 1.6 98.4 0 0 0
Buggy 0 0 0 97.2 0 2.8
Suitcase 6.4 0 0 0 85.4 8.0
Kangaroo 14.7 0 0 0 85.3

appearance and dynamics resemble those of skaters. A per-
centage of 0.5% were classified to be a person on kangaroo-
shoes. All these tracks belonged to running pedestrians, too.
We obtain a rate of 97.5% for skaters with one track (0.1%)
falsely classified as kangaroo-shoes and 2.4% classified as
pedestrians. The latter group was found to skate slower than
usual with a small pace, thereby resembling pedestrians. Cy-
clists are classified correctly in 98.4% of the cases. None of
them was falsely recognized as pedestrians, buggies, suit-
cases, or person on kangaroo-shoes. But it appeared that
the bicycle wheels produced measurements that resemble
skaters taking big steps. This lead to a rate of 1.6% of cy-
clists falsely classified as skaters. A percentage of 97.2% of
the buggy tracks were classified correctly. Only 2.8% were
found to be a subject on kangaroo-shoes. In this particular
case, the track contained measurements in which the front
of the buggy was partially outside the field of view of the
sensor with two legs of the person still visible. The pedes-
trians pulling a suitcase were correctly classified in 85.4%.
Unfortunately, 6.4% were classified as pedestrians and 8%
were considered to walk on kangaroo shoes. Typically, the
people in these tracks walked with a lower pace, so that both
legs and the suitcase appeared as the legs of a pedestrian
or the kangaroo shoes. Subjects on kangaroo shoes were
correctly recognized at a rate of 85.3% with 14.7% of the
tracks falsely classified as pedestrians. The manual analy-
sis revealed that the latter group consisted mainly of kanga-
roo shoe novices taking small steps and thus appearing like
pedestrians.

In conclusion, we find that, given the limited informa-
tion provided by the laser data and the high level of self-
occlusion naturally occuring in this setting, the results in-
dicate that our exemplar models are expressive enough to
discriminate between relevant object classes accurately.

7.2 Unsupervised learning experiments

In the second experiment the classes were learned in an un-
supervised manner. The entire set of 500 tracks from all six
classes was presented to the system in random order.

@ Springer

Table 3 Unsupervised learning results. Whereas the rows contain the
learned classes, the columns show the number of classified objects. The
last column shows the manually added labels and the last row contains
the total number of tracks of each class

Classes PED SKA CYC BUG SUI KAN

Class 1 (209) 187 5 0 0 3 17 “PED”
Class 2 (114) 7 107 0 0 0 0 “SKA”
Class 3 (41) 0 0 41 0 0 0 “Cye”
Class 4 (23) 0 0 23 0 0 0 “Cyec”
Class 5 (26) 0 0 1 25 0 0 “BUG”
Class 6 (23) 0 0 0 23 0 0 “BUG”
Class 7 (38) 0 0 0 0 38 0 “Sur”
Class 8 (23) 0 0 0 0 23 0 “Sur”
Total (500) 194 112 65 48 64 17

Each track was either assigned to an existing class or was
taken as basis for a new class according to the learning pro-
cedure described above. As can be seen in Table 3, eight
classes have been generated for our data set: one class for
pedestrians (PED), one for skaters (SKA), two for cyclists
(CYC), two for buggies (BUG), two for suitcases (SUI), and
none for kangaroo shoes (KAN).

Class one (labeled PED) contains 187 pedestrian tracks
(out of 194), 5 skater tracks, 4 suitcase tracks, and 17 kan-
garoo tracks resulting in a true positive rate of 89.5%. Class
two (labeled SKA) holds 107 skater tracks (out of 112) and
7 pedestrian tracks yielding a true positive rate of 93.9%.
Given the resemblance of pedestrians and skaters, the to-
tal number of tracks and the extent of intra-class variety,
this is an encouraging result that shows the ability of the
system to discriminate objects that vary predominantly in
their dynamics. Classes three and four (labeled CYC) con-
tain 41 and 23 cyclist tracks respectively. No misclassifica-
tions occurred. The classes five and six (labeled BUG), hold
25 and 23 buggy tracks with a bicycle track as the single
false negative in class five. The last two classes, seven and
eight (labeled SUI), consists of 38 and 23 tracks of pedestri-
ans pulling a suitcase. Again no misclassifications occurred.
The representation of cyclists, buggies, and suitcases by two
classes is due to the larger variability in their appearance and
more complex dynamics. The discrimination from the other
three classes is exact—no pedestrians, skaters, or subjects
on kangaroo shoes were classified to be a cyclist or a buggy.

The system did not produce a specific class for subjects
on kangaroo shoes as all instances of the latter class were
included in the pedestrian class. The best known model for
all 17 kangaroo tracks was always class one which has pre-
viously been created from a pedestrian track. This results
in a false negative rate of 8.1% from the view point of the
pedestrian class. This result confirms the outcome of the su-
pervised experiment where the highest misclassification rate
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Fig. 8 Analysis of the track velocities as alternative features for clas-
sification. While high velocity is a strong indicator for a certain class
(CYC), there is a higher confusion in the low and medium range

(14.7%) was found to be between pedestrians and subjects
on kangaroo shoes (see Table 2).

7.3 Analysis of track velocities

The data set of test trajectories that was used in our ex-
periments contains a high level of intra-class variation, like
for example skaters moving significantly slower than aver-
age pedestrians or even pedestrians running at double their
typical velocity. To visualize this diversity and to show that
simple velocity-based classification would yield unsatisfac-
tory results, we calculated a velocity histogram for all six
classes. For every velocity bin, we calculated the entropy
H(v;) = Y5_,(p(cjlvi) - log p(c;|v;)) and visualized the
result in Fig. 8. Note that the uniform distribution over six
classes, which corresponds to random guessing, has an en-
tropy of 6 - (1/6 - log(1/6)) ~ —0.778, which is shown by a
straight, dashed line. As can be seen from the diagram, high
and low velocities are strong indicators for certain classes
while there is a high level of confusion in the medium range.

7.4 Classification with a mobile robot

To demonstrate the practicability of the approach for a mo-
bile sensor, an additional supervised and unsupervised ex-
periment was carried out with a moving platform. A total
of 18 tracks has been collected: 3 pedestrian tracks, 5 skater
tracks, 4 cyclist tracks, and 6 suitcase tracks (kangaroo shoes
and buggies were unavailable for this experiment). The ro-
bot moved with a maximal velocity of 0.75 m/s and an av-
erage velocity of 0.35 m/s. A typical robot trajectory is de-
picted in Fig. 9.

For the supervised experiment, the trained models from
one of the supervised experiments in Sect. 7.1 have been
reused to classify the tracks collected from the moving plat-
form. All objects were classified correctly. Table 4 contains
the classification probabilities (¢ being the track length) av-
eraged over all tracks in the corresponding class. The last
two columns contain the probabilities for the classes BUG
and KAN, all being close to zero. The lowest classification
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Fig. 9 Trajectory of the robot (an ActivMedia PowerBot) and a pedes-
trian over a sequence of 450 observations

Table 4 Averaged classification probabilities for the supervised ex-
periment with the moving platform. All objects have been classified
correctly

Classes PED SKA CYC SUI BUG KAN
Pedestrian 0.86 0 0 0 0 0.14
Skater 0.08 0.83 0 0 0 0.09
Cyclist 0.01 0 0.85 0.08 0.06 0.01
Suitcase 0.01 0 0 0.94 0.03 0.02

probability in this experiment was a pedestrian track which
still had the probability 0.73 of being a pedestrian.

In the unsupervised experiment, the tracks have been pre-
sented to the system in random order without prior class in-
formation. The clustering result compared to human classifi-
cation was exact: four classes were created autonomously—
each containing the tracks of exactly one object category.

8 Conclusions and outlook

We have presented an unsupervised learning approach to the
problem of tracking and classifying dynamic objects. In our
framework, the appearance of objects in planar range scans
is represented by a probabilistic exemplar model in conjunc-
tion with a hidden Markov model for dealing with the dy-
namically changing appearance over time. Extensive real-
world experiments including 500 recorded trajectories show
that (a) the model is expressive enough to yield high classi-
fication rates in the supervised case and that (b) the unsuper-
vised learning algorithm produces meaningful object classes
consistent with the true underlying class assignments. Addi-
tionally, our system does not require any manual class label-
ing and runs in real-time.

In future research, we plan to strengthen the intercon-
nection between the tracking process and the classification
module, i.e., to improve segmentation and data association
given the estimated posterior over future object appearances.
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