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People Tracking with Human
Motion Predictions from Social Forces

Matthias Luber Johannes A. Stork

Abstract— For many tasks in populated environ-
ments, robots need to keep track of current and future
motion states of people. Most approaches to people
tracking make weak assumptions on human motion
such as constant velocity or acceleration. But even
over a short period, human behavior is more complex
and influenced by factors such as the intended goal,
other people, objects in the environment, and social
rules. This motivates the use of more sophisticated
motion models for people tracking especially since
humans frequently undergo lengthy occlusion events.

In this paper, we consider computational models de-
veloped in the cognitive and social science communi-
ties that describe individual and collective pedestrian
dynamics for tasks such as crowd behavior analysis.
In particular, we integrate a model based on a social
force concept into a multi-hypothesis target tracker.
‘We show how the refined motion predictions translate
into more informed probability distributions over hy-
potheses and finally into a more robust tracking be-
havior and better occlusion handling. In experiments
in indoor and outdoor environments with data from
a laser range finder, the social force model leads to
more accurate tracking with up to two times fewer
data association errors.

I. INTRODUCTION

People tracking is a key technology for mobile robots
to be safely and efficiently deployed in populated en-
vironments. Most related work in people tracking [1],
[2], [3], [4] make weak assumptions on the motion of
humans and employ either the Brownian model or the
constant velocity motion model. The former makes no as-
sumptions about the target dynamics, the latter assumes
linear target motion and constant velocity. Both models
predict future states merely based on the history of past
states. However, human motion follows more complex,
non-linear patterns. People are usually driven by an inner
motivation towards some goal, they are influenced by
obstacles and other people along their path, and follow
social rules. In other words, human motion is influenced
by the physical and social constraints of the environment.

Better motion models for people tracking have been
proposed. In [5], the robot first learns goal locations in
the environment from people trajectories. Human motion
is then predicted along paths computed by a planner
from the actual location of the person being tracked
to the estimated goal location. Liao et al. [6] extract
a Voronoi graph from a map of the environment and
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Fig. 1. Twelve of 150 tracks from the outdoor experiment. The
cylinders show the estimated positions of the pedestrians, the
colored dots illustrate their past trajectories. The circles connected
with lines are the virtual goals. The occupancy grid map is overlaid
where darker blue cells indicate higher occupancy probability.
Vertical lines visualize static objects.
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constrain the state of people to lie on edges of that
graph. The motion of people is then predicted along those
edges following the topological shape of the environment.
Bennewitz et al. [7] learns typical motion patterns that
people follow in an environment. The approach collects
trajectories of people and combines them to motion
patterns using EM clustering. From each pattern a HMM
is derived that enables a mobile robot to predict the
motion of people. In a recent work, Luber et al. [8] learn
spatial priors on human motion in an environment using
a non-homogeneous spatial Poisson process. The process
is learned by observing people, leading to spatial distribu-
tions of where people usually walk, appear or disappear.
A place-dependent motion model is then derived from
the Poisson process using a sample-based approach.
Models for pedestrian dynamics have also been de-
veloped and applied in communities such as quantita-
tive sociology or spatial cognition. They are used for
crowd simulation, evacuation dynamics, or building de-
sign (Fig. 2). Schadschneider et al. present a taxonomy
of various models in [9]. A first group of approaches em-
ploy fluid-dynamic and gas-kinetic models [10] in which
people are considered particles with their motion being
described by fluid-dynamic equations. These approaches
are typically deterministic and force-based. This is unlike
methods based on cellular automata that are discrete,
rule-based dynamical models. They discretize space into
cells that can be occupied by at most one person. The
dynamics is usually described by a set of rules specifying
the probability of moving to the neighboring cells. An
extension of this approach is the floor field approach [11],
where the transition probability of cells are not fixed
but vary dynamically. Ali and Shah [12] combine a floor
field approach with an evacuation model to improve
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people tracking. However, given their discrete nature,
such motion models cannot be readily applied within a
probabilistic tracker that requires proper error propaga-
tion in the state prediction step.

The social force model proposed by Helbing et al. [13]
is a deterministic continuum model in which interactions
between pedestrians are described using the concept of
social forces or social fields. These forces model different
aspects of motion behaviors, such as the motivation of
people to reach a goal, the repulsive effect of walls and
other people as well as physical constraints.

In this paper we combine a people tracker with a
pedestrian dynamics model for the purpose of more
realistic human motion predictions. Among the existing
methods, we choose the social force model as it is a
simple yet powerful approach with justifications from
social psychology. Its building block, the social force, is
well explained by psychological and social insights. We
extend the state-of-the-art of human motion prediction
for tracking by two points. First, we use a single out-
of-the-box model that is able to coherently describe
several aspects of pedestrian dynamics such as intention
towards a goal, constraints from the environments and
from other people. This is in contrast to previous work
that uses combinations of methods, such as goal learning
and planning [5], Voronoi graph extraction from a map
[6] or EM clustering and HMMs [7]. The model requires
no learning step. Secondly, our model deals with inter-
people relations for motion prediction. During an occlu-
sion event of two persons approaching each other, for
instance, the model will not predict their future states
into the other person (or into an object). This is an
important aspect, as shown in the experiments, that has
not been previously considered.

Independently developed from our work, Pellegrini et
al. recently proposed the social force model for motion
prediction in the context of visual people tracking [14].
In their approach, the person velocity is also accounted
for in the energy potential. This is achieved by estimating
the closest future distance in the space-time trajectory of
targets and use this distance as an additional potential.
This enables the system to plan ahead to some extent but
comes at the expense of the loss of a closed-form solution.
Unlike [14] we consider additional forces from the envi-
ronment by maintaining a short-term environment model
and computing different repulsion forces and physical
constraints from static obstacles. We then compare their
contribution with those from inter-person influences only.

The paper is structured as follows. Section II intro-
duces the theory of the social force model. Section III
describes how the model can be used to compute refined
motion predictions. Section IV presents the experimental
results followed by the conclusions in section V.

II. THE SociAL FORCE MODEL

The social force model by Helbing et al. [13], [15] is a
computational model in which the interactions between
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Fig. 2. Example simulation of crowd behavior in a crossing
using the social force model. Two groups of pedestrians (shown
as red and blue circles) try to traverse the crossing to reach the
opposite corridor. Over time, lanes in a twirl-like pattern emerge
in a bottom-up fashion as the most efficient motion strategy (left
t = 0, right ¢ = 2 min).

pedestrians are described by using the concept of a social
force. It is based on the idea that changes in behavior can
be explained in terms of social fields or forces. Applied
to pedestrians, the social force model accounts for the
influence of the environment and other people and de-
scribes how the intended direction of motion changes as
a function of these influences. The model does not cover
cases of multiple options, when people have to actively
decide. Game theoretic approaches can be applied in such
situations.

Formally, the models assumes that a pedestrian p; with
mass m; likes to move with a certain intended velocity v;
in an intended direction €; and therefore tends to adapt
his or her velocity v; within a so called relazation time
7;. This change of velocity is modeled by the personal
motivation R

Fg)ers =m; Vi€; —U; ) (1)
The relaxation time is the time interval needed to reach
the intended velocity and the intended direction.

In the presence of other people or objects in the
environment, a pedestrian might not be able to keep the
intended direction and velocity. In the social force model,
repulsive effects from these influences are described by an
interaction force F;°°. This force prevents humans from
walking along their intended direction and is modeled as
a sum of forces either introduced by other individuals p;
or by static obstacles denoted by subscript o

D I D O 2)

JEP\{i} e

Ti

with P = {pi}fv:”l being the set of all people and O the
static objects of the environment. These forces decrease
proportional to the distance of their sources and are
modeled as

soc (Ti,k*di,k
_ b
i,k — Ok€ k

) ni 3)

where k € PUQ is either a person or an object of the
environment, ay specifies the magnitude and by, the range
of the force. In order to calculate the Euclidean distance
between p; and entity k, pedestrians and objects are
assumed to be of circular shape with radii r; and 7,
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Fig. 3. Forces in the social force model shown as red arrows.
Pedestrian pj is affected by the physical force of the static part
of the environment. Pedestrian p; is both affected by the wall and
an other person p;. The superposition of forces exerted to p; is
shown as the blue arrow F;.

respectively. Then, distance d; j, is given by the Euclidian
distance between the centers, and r; j is the sum of their
radii. The term m;j is the normalized vector pointing
from k to p; which describes the direction of the force.

Given the limited field of view of humans, influences
might not be isotropic. This is formally expressed by
scaling the forces with an anisotropic factor

Tik— i,k 1 _

(4)

where X define the strength of the anisotropic factor and

cos (pik) = —Mik €. (5)

Human motion is not only influenced by personal
motivation and reactive behavior towards obstacles or
other people but is physically constrained by the envi-
ronment [15]. Hard constraints restrict the motion and
thereby define the walkable area of the environment.
Therefore, the social force model introduces a physical
force F?hys onto pedestrian p; described as

RN VLTS S
JEP\{i} 0€0
fipzlclys = ek g(rik — dik) ik, (7)

where ¢, represents the magnitude of the exerted force.
To make the physical forces a real contact force where
the circular shapes of p; and k overlap, the function g is
defined as g(x) = z if > 0 and 0 otherwise.

Finally, human motion is explained by the superpo-
sition of all exerted forces. Accordingly, the force F;
changing the motion of individual p;

Fi _ F?ers + F?OC + F?hys. (8)

Using F;, the basic equation of motion for a pedestrian

is then of the general form

d F;

—v; = — 9

dt ! m; ( )
and describes the movements of p; over time. An illus-
tration of all forces is shown in Fig. 3. The physical force
£y };ys that the wall exerts onto person pj, is shown. This
avoids motion predictions through walls. A superposition

of different forces onto pedestrian p; is also shown.
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Fig. 4. Typical functions for the exerted forces. The x-axis shows
the distance from person p; to an object o or a person pi and the
y-axis the magnitude of the forces in Newton. The radius of p; is
r; = 0.2m and the sum of the radii of p; and py is r; 1, = 0.4m.

The person wants to keep his or her intendend velocity
through the motivation FY*® but is also influenced by
£75° from person p; and by f0° from the wall. This
results in the superimposed force F; used to adapt the
velocity of p;.

III. MoTioN PREDICTION USING SOCIAL FORCES

Good motion models are particularly important for
people tracking as people frequently undergo lengthy
occlusion events during interaction with each other or
with the environment. In this section, we show how the
social force model can be combined with a Kalman filter
based tracker to result in a more realistic prediction
model of human motion.

Let x; = (2 y: @ 9)T = (@ vy )T be the state
of pedestrian p; at time t and X; its 4 X 4 covariance
matrix estimate. The term x; represents the position and
vy the velocity of the pedestrian in Cartesian space. In
the remainder we will skip subscript ¢ for the sake of
simplicity. The constant velocity motion model is then
defined as

P(x¢ [ Xe—1) = N (x5 A X421, AS4 1 AT+Q)7 (10)

with A being the state transition matrix. The entries
of @) represent the acceleration capabilities of a human.
We extend this model by considering how the state of
the pedestrian at a generic time ¢ is influenced by its
previous state, other people P and static obstacles O.
We use a discrete time approximation of Eq. 9 within a
fixed interval of time At to obtain x; = £(x¢—1, P, O),
where

T+ At + %%AtQ

§(x-1, P, 0) = v +EAL

(11)
describes how the motion of a pedestrian evolves over
time. The change in motion is calculated according to
the pedestrian’s intended velocity, reactive behavior from
interaction forces and physical constraints from the envi-
ronment, according to Eq. 8. Assuming that the motion is
affected by Gaussian noise with zero mean and covariance
matrix () we have

p(Xt|Xt_1,P,O) =
N(thg(xt,1773, O>7 Jf thl JgT + Q)7

(12)
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where Je = %ﬁ;) is the Jacobian of £(-) evaluated at x;_1.

Without external stimuli and deviation from the in-
tended direction and preferred velocity, F is zero, no
social forces are applied to the pedestrian and the social
force model falls back onto the constant velocity motion
model. The computation of the individual forces is ex-

plained in the following sections.

A. Estimating Short-Term Intentions

The social force model is based on the assumption that
each pedestrian has an intended direction of motion and
a preferred velocity, both as a result of a higher level
goal. However, estimating this goal from the observation
of a tracked person involves the problem of intention
or activity recognition, an issue beyond the scope of
this work. Since we focus on short-term human motion
prediction, we make the weak assumption that subjects
will continue to pursue his or her short-term intention
keeping the current velocity vector.

In doing so, we introduce the concept of virtual goals.
A virtual goal is defined as the hypothetical position that
a person would reach if he or she moved by keeping the
current velocity. Virtual goals also hold the expected time
tg until which the person would attain the goal. In other
words, the position of the individual p; is projected into
the future for a short time interval (proportional to the
tracker cycle time) and denoted goal ahead time Ag =
kAt. The location of the virtual goal g and the expected
goal time tg are defined as

g, =x, +v, (t — 1o+ Ag) te =t+ Ag, (13)

where t, denotes the time when we last observed the
person and ¢ the actual time. Note that the virtual goal is
not fixed but moves along the last estimate of the velocity
vector as time goes by. This behavior is needed as we do
not know the duration of an occlusion event in advance
and therefore we adjust the virtual goals on-the-fly.

Once g, is estimated, the intended direction €; and
velocity vy can be calculated using the offset between x;
and g, and the expected goal time tg

Et _ gt — Lt
lg: —

For long term motion prediction the assumption of a
virtual target destination can be generalized to goals that
can either be learned by observing motion trajectories [7]
or calculated from map representations [5], [8].

~ g — =
= . 14
Vi e (14)

B. Estimating Social Interactions

While moving towards their virtual goal, the move-
ments of the person are affected by the surrounding envi-
ronment according to Eq. 2. The position x, of all p € P
is provided by the tracking system, where each existing
track is considered to be a separate individual. As for
the static objects, we assume that no representation of
the environment is known in advance and we estimate it
using an occupancy grid framework. The grid is built

by using the most recent laser observations (the last
30 in the experiments) and discarding points that are
detected as people from our detection algorithm. When
the occupancy probability of a cell is above a predefined
threshold, it is consider to be occupied and inserted in
the set of static obstacles O. The center of this cell is
then used as its position x,.

Once the surrounding people are known and the envi-
ronment is learned, the interaction force exerted from
k € PUQO can be calculated following Eq. 4, where
the normalized vector pointing from k to p; is n;, =
ﬁ Since the laser range finder is sensing the
surfaces of the obstacles, we assume they have no radius,
ie. 1, = 0, and the sum of the radii r; ) is set to the
radius of the individual p;.

The grid is meant to be a short-term memory. In case
of a mobile sensor, subsequent laser observations need
to be registered into the common reference frame of the
grid, either by using odometry, scan matching or map-
based localization.

C. FEstimating Physical Forces

Physical forces according to Eq. 6 model the close
contact interaction between two rigid bodies and express
the principle that two different bodies cannot occupy the
same space. The position of a person x, and of a static
object x, and the direction of the force n, ), are obtained
in the same way as for the interaction forces described
above. Physical forces are effective only when a physical
contact is present (model by the function ¢(-) in Eq. 7).

The choice of having an occupancy grid instead of raw
data as static obstacles has the advantage of constant
force density. Using raw data, the density would vary over
different parts of the environment, making the system
behave differently. With an occupancy grid, it is possible
to adjust and control the density of static obstacles by
the cell size.

IV. EXPERIMENTS

To experimentally evaluate the social force model and
analyze its behavior, we integrate it within an MHT-
based people tracker described in Arras et al. [4]. The
Multi-Hypothesis Tracking (MHT) approach, based on
the work of Reid [16] and Cox and Hingorani [17], hy-
pothesizes about the state of the world by considering all
statistically feasible assignments between measurements
and tracks and all possible interpretations of measure-
ments as false alarms or new track and tracks as matched,
occluded or obsolete. A hypothesis Q! is one possible
set of assignments and interpretations at time ¢t. As the
motion of an individual track is now influenced by other
tracks in a hypothesis !, motion predictions cannot be
done on a per-track basis but must be done on a per-
hypothesis basis. The track tree proposed by Kurien [18]
is a data structure that holds tracks from all hypothesis
to exploit the fact that frequently, several hypothesis
share the same tracks. This optimization technique has
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Fig. 5. Four of 135 tracks from the indoor experiment. The
cylinders show the estimated positions of the pedestrians, the
colored dots illustrate their past trajectories. The circles connected
with lines are the virtual goals. The occupancy grid map is overlaid
where darker blue cells indicate higher occupancy probability.
Vertical lines visualize static objects.
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to be abandoned with the social force model leading to
increased memory requirements of our implementation.

Note that although we use the MHT as a tracking
approach, our model is general and can be integrated
in any existing tracking method.

We compare the tracking performance between the
constant velocity motion model, the social force model
and the social force model where only inter-human influ-
ences are considered. The data association error is used
as a comparison measure, that is the number of identifier
switches over the life cycle of a a tracked compared to
ground truth. This value is indication of the tracking
accuracy, especially of the ability to deal with occlusions.

We have collected two data sets: the first one in our
laboratory (Fig. 5) and a second one in the city center
of Freiburg (Fig. 1). The data have been recorded at
12Hz using a fixed SICK laser scanner with an angular
resolution of 0.5 degree mounted 0.8 meter above the
floor. We use a pruning strategy that limits the maximum
number of hypotheses of the MHT at every step to
Nrryp (the multi-parent variant of the pruning algorithm
proposed by Murty [19]). In order to show the evolution
of the error as a function of the computational effort,
Npyp is varied from 5 to 100 in the indoor experiment
and from 50 to 1000 in the outdoor experiment.

To initialize the social force model, we assume that a
general person has a radius of 0.2 meter and a mass of
80kg. The anisotropic blending factor of Eq. 4 is defined
to be 0.5, the goal ahead time is set to 60 tracking cycles
and the relaxation time to 0.5 seconds. The parameters
for the social forces exerted by obstacles are a = 100 N
and b= 0.01m. For the social forces between persons
we set a =70N and b= 0.4m. Physical forces from
obstacles have a magnitude of ¢ = 600~/m where the
magnitude of the physical forces between persons is
¢ = 250 N/m. These values have been determined exper-
imentally from a set of calibration trials. The functions
are plotted in Fig. 4.

A. Indoor Environment

The indoor data set from our laboratory consists of
38994 frames with a total number of 135 people entering

500 .
constant velocity ———

social force
400 o ) c
social force without environment -++=++--+

300 [

200 .

data association errors

100 - B

Niyp

Fig. 6. Total number of data association errors as a function of
Niyp, the maximum number of hypotheses for the MHT algorithm
to maintain. The solid red line shows the MHT tracker using the
constant velocity motion model, the dashed green line the approach
using the social force motion model and the dotted blue line the
approach using inter-human influences only. The social force model
makes about 30% fewer data association errors.

and leaving the sensor field of view. Both the detection
and the data association have been labeled by hand to
yield the ground truth.

The result shows a clear improvement of the MHT
using the social force motion model over the regular
approach with constant velocity motion model (Fig. 6).
During occlusion events the tracker was able to avoid pre-
dictions into other people or walls leading to a more likely
confirmation of tracks when they reappeared. Given the
same number of hypotheses, the social force model makes
around 30% fewer data association errors. Comparing the
results of the two social force variants, the influence of
the environment is smaller than initially expected.

The insight of this behavior is that better motion
predictions lead to smaller innovations in the Kalman
filter which translates to higher likelihoods as now the
observations are better explained by the predictions. As
the probability of a hypothesis directly depends on the
likelihoods, the outcome is a more informed probability
distribution over hypothesis. Consequently, the MHT
tracker achieves similar performance at lower cost, or
alternatively, higher efficiency at the same accuracy (see
e.g. [4] for more details on the MHT theory).

B. Outdoor Environment

The second experiment has been carried out in the
city center of Freiburg during a regular workday. The
data set consists of 55475 frames during 25 minutes.
8600 frames with 150 persons have been labeled by hand,
again to determine the ground truth detections and data
associations. Occlusions are even more likely in such an
scenario as more people move in a larger space. The
resulting data association error is shown in Fig. 8.

The result shows an even more significant improvement
by the social force model especially for smaller numbers
of Npyp. Again, the contribution of the forces exerted by
static obstacles is small, though higher than in the indoor
case. For more than 800 hypotheses the social force model
is still 16% better (644 versus 541 data association errors)
than the constant velocity motion model.
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Fig. 7.

Four images of the outdoor experiments carried out in the inner city of Freiburg. The information of the laser range finder and

the tracking system were projected onto a recorded video sequence. The images from left to right show the tracking results at timesteps
t = 335,353,365 and 381. Laser range measurements are shown as small green dots (background) or small red dots (detected pedestrians).
The traces of the observed pedestrians are drawn with colored ellipses.
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Fig. 8. Total number of data association errors as a function of
Ngyp. The solid red line shows the MHT tracker using the constant
velocity motion model, the dashed green line the approach using
the social force motion model and the dotted blue line the approach
using inter-human influences only. The graph shows that the tracker
requires fewer hypothesis to reach the same accuracy and, given
more hypothesis, makes up to 50% fewer data association errors.

V. CONCLUSIONS

In this paper we presented a novel approach to human
motion prediction based on social forces and environmen-
tal constraints. It overcomes the assumption typically
made in related work of constant target velocity or
acceleration. Our approach extends state-of-the-art by
taking into account the influence of other people for
human motion prediction. This is achieved with a single
coherent model able to describe complex motion with
a sound mathematical formulation. We showed how the
social force model can be easily incorporated into a
Kalman filter-based multi-hypothesis tracker.

The experiments, carried out in indoor and outdoor
environments, demonstrate that our approach reduces
the data association error by up to a factor of two.
We found that the contribution of the interaction forces
from the environment is small with respect to the forces
from other people. This outcome is noteworthy and
underlines the importance of considering other people in
the prediction of human motion.

In future work, we will analyze friction and attractive
forces, expressed within the social force model, to im-
prove motion prediction for group tracking.
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