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Abstract—People tracking is a key component for
robots operating in populated environments. Previ-
ous works have employed different filtering and data
association techniques for this purpose that typically
rely on a set of generic assumptions on target be-
havior and detector characteristics. In this paper, we
focus on these assumptions rather than the tracking
approach itself and show that with informed models,
people tracking can be made substantially more ac-
curate without compromising efficiency. Concretely,
we present better, human-specific models for the
occurrence of new tracks, false alarms, track occlu-
sions, and track deletions. In the experiments with
a large-scale outdoor data set collected with a laser
range finder, the models and combinations thereof
are experimentally compared using a multi-hypothesis
baseline tracker and the CLEAR MOT metrics. The
results show how some models selectively improve
tracking performance at the expense of other mea-
sures. The final combination is then able to resolve the
trade-offs, leading to a reduction of data association
errors by more than a factor of two at the same cost.

I. Introduction

As robots enter domains in which they interact and co-
operate closely with humans, people tracking is becoming
a key technology for many research and application areas
in robotics and related fields.

The task has been addressed with a variety of general-
purpose target tracking techniques that employ different
filtering and data association schemes. Typically, these
systems make generic assumptions about the target be-
havior and the detector characteristics. But for people as
targets, some of these assumptions are overly simplistic
and ignore important information that is available. For
example, new tracks are often assumed to be uniformly
distributed over the sensor field of view. But the way how
people move is often given by static environmental con-
straints that can be learned. Indoors, for instance, doors
or convex corners are typical places where people appear.
The same place-dependency applies for the behavior of
a detector. Regions of clutter and complex background
produce false alarms more likely than in open space,
making a spatially uniform model a poor approximation.

The techniques that have been employed for people
tracking in past include Kalman filters (KF) and nearest-
neighbor data association [1], [2], particle filters and
a sample-based variant of the Joint Probabilistic Data
Association filter (JPDAF) [3], the KF-based multi-
hypothesis tracking filter (MHT) [4], [5], [6], or a KF-
based tracker in which the data association is formulated
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Fig. 1. Twelve of 162 tracks from the outdoor experiment. The
cylinders show the estimated positions of the pedestrians, the
colored dots illustrate their past trajectories.

as a Minimum Description Length problem and solved
using Quadratic Boolean Programming [7]. Tracking peo-
ple becomes particularly challenging if the targets are
identical in appearance which is typically the case for
tracking using radar or laser range finders. With a good,
target-specific appearance model, many hard tracking
problems such as dealing with occlusions and interactions
of tracks, becomes much easier to cope with. For this
reason, visual tracking systems, where rich appearance
information is available, can achieve good results with
nearest-neighbor data association filters as in [8] using a
set of independent particle filters. However, in this paper,
we assume targets to have identical appearance.

The paper is structured as follows. The next sec-
tion reviews related work. Section III introduces the
theory of the proposed models. Section IV provides a
short overview of the multi-hypothesis tracking approach
and describes how the models are integrated into this
framework. Section V presents the experimental results
followed by the conclusions in section VI.

II. Related Work

Every tracking system needs to deal with new tracks,
false alarms, missed detections, occlusions and track
terminations. We review the people tracking literature
with respect to how these events have been modeled.

Schulz et al. [3] propose a local occlusion grid to
determine the probability of a track being occluded or
a measurement being missed in a sample-based JPDAF
framework. Taylor et al. [4] track legs of a single person
in laser data using a MHT. Based on the relative po-
sitions of legs to each other, the occlusion probability
is approximated with a piecewise linear model. Arras
et al. [6] reformulate the MHT expressions to make the
occlusion probability an explicit parameter. Then they
track multiple people by separately tracking legs and
adapt the occlusion probabilities of tracks as soon as
tracks are recognized to belong to a person. In Katz et
al. [9] probabilistic occlusion checking is used to improve
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the robustness of a motion detection algorithm. The
occlusion probabilities are computed by a sample-based
visibility check for each track. A similar model has also
been used by Mucientes et al. [5]. For the purpose of
vision-based multi-person tracking Ess et al. [10] model
occlusions in a occlusion grid map, keeping tracks alive
that are known to be hidden by other tracks and static
objects as a hard decision.

With the exception of [6], all these works compute
the final occlusion probability on a per-track basis by
a geometric visibility test that determines if or how far a
track is ‘in the shadow’ of other tracks or static objects.
In [4] this is realized using a piecewise linear model, all
others use samples to this end.

For track terminations or deletions, one can assume
a constant deletion probability as in the regular MHT
approach [11]. Counting the number of consecutive non-
confirmations of a track and deleting it when it exceed
a threshold has been done e.g. in [8]. This simulates the
decrease in probability of detecting a target that could
not be assigned to an observation in several consecutive
frames. Mucientes et al. [5] track clusters of people in
laser range data, modeling the probability of deleting a
track from a cluster with an exponential decay function.
In [3], the same principle was realized using a discounted
average weight of the particles that automatically de-
creases when tracks are no longer confirmed. Weak tracks
in this sense are then deleted if a mismatch with the
number of observations is encountered. In Lin et al. [12]
the track score based on a likelihood ratio of deleting
or not deleting the track is computed. If this score falls
below a given threshold the track is deleted.

The arrival of new tracks is modeled by Schulz et al.
[3] as a Poisson process with constant rate over time and
a uniform distribution over space. The same assumptions
are taken in the regular MHT approach. A simple form
of place-dependency has been realized by Breitenstein et
al. [8], a visual surveillance scenario with a static camera,
where a predefined area around the border of the image
has been manually put to describe the region where new
tracks may appear. It is assumed that no new tracks
arrive in the center of the image.

The false alarms model that is employed in most
related works, e.g. in Khan et al. [13], predicts spurious
measurements uniformly over the sensor field of view.
This is also the assumption in the original MHT.

In our previous work we already addressed two of these
models [14]. We learned place-dependent Poisson rate
functions that describe the occurrence of false alarms
and new tracks. The approach overcomes the assumption
that these events are uniformly distributed in space and
is able to model that people typically appear at specific
locations in the environment and that false alarms occur
more likely in places with clutter.

In this paper we combine this approach with a sample-
based occlusion model that incorporates geometric in-
formation from the scene and a deletion model that

Fig. 2. Learned spatial priors in the environment of the data set
used in the experiments. The probability distribution of new track
events is shown on the left, the distribution of false alarm events
is shown on the right. Local maxima of the new track distribution
denote locations where people appear often in the sensor field of
view. High probability regions in the false alarm distribution denote
clutter and areas in which detector failures are more likely.

assumes exponentially distributed interarrival times of
observations. We extend the state of the art where
these models have been considered only in isolation by
a systematic experimental review of the effects of each
model and their combinations. We carry out large-scale
experiments with a challenging data set, collected in the
city center of Freiburg and compare the different models
using the recently proposed CLEAR MOT metric [15].
The insights gained in this paper are valid for people
tracking in general regardless the sensor modality, the
filtering approach, or the space in which targets are
represented.

III. Models for People Tracking

This section introduces the different models that we
consider in our comparison.

A. New Track and False Alarm Models
During tracking, there are situations where a sensor

observation cannot be explained by any of the current
tracks. The measurement is therefore either spurious (a
false alarm or false positive) or a new target that entered
the sensor field of view. It is typically impossible to
determine which of the two interpretations is correct from
a single scan or image. Instead, probabilities for both
events can be computed, and if the tracking framework
is able to integrate data association and interpretations
over time, decisions can be taken in a delayed fashion.
In order to compute probabilities, models are required
that predict how often and where new tracks and false
alarms occur. As mentioned in the previous section, the
general assumption is that new tracks and false alarms
occur both uniformly over the sensor field of view at rates
that follow a Poisson distribution.

This assumption may be valid for traditional setups
in target tracking in which airborne targets are sensed
by an upwards looking radar or setups that do not use
a target detector. For people, however, this model does
not account for the place-dependent character of human
behavior and the place-dependent character of visual or
range-based people detectors. People typically appear,
disappear, walk and stand at specific locations that
correspond, for instance, to doors, elevators, or convex
corners. A similar insight is true for people detectors that
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are more prone to false positives in areas of background
clutter and at locations of objects with a target-like
appearance, leading to systematic misdetections.

We address these issues by learning a spatial Poisson
process that predicts both new track and false alarms
using a spatio-temporal rate function. As the model
itself, the theory and the way learning is done in this
case of a Poisson process has been recently presented
in [14], we summarize the main ideas. The model is
a non-homogeneous spatial Poisson process with rate
functions λnew (x, t) and λfal(x, t) that are functions of
space x ∈ R2 and time t. These functions are learned in
a grid approximation (making it a piecewise homogenous
process). For each grid cell, the rates can be learned
from tracking targets and counting each type of events
(new tracks or false alarms) that occurs in that cell.
We use Bayesian parameter learning to obtain a rate
estimate that is better suited for our task than the
corresponding maximum likelihood estimate. As it has
been shown in [14], estimating a Poisson rate becomes a
parameter estimation problem of a Gamma distribution,
which, after some simplifications, leads to a straightfor-
ward expression to count in a grid. Concretely, the rate
estimate λ̂Bayes for a given type of events is obtained by

λ̂Bayes =
#positive events + 1
#observations + 1

. (1)

We learn events using a baseline tracker with learned
fixed parameters that each time when the best hypothesis
contains a new track at a given position, the correspond-
ing cell is updated accordingly.

Given a learned rate function λnew (x, t) for new track
events (for false alarms the same procedure applies), we
obtain a probability distribution by normalization

pnew (x) =
λnew (x, t)
λnew (t)

, (2)

with λnew (t) =
∫

V
λnew (v, t) dv where V is the sensor

field of view. Figure 2 shows the learned rate functions
for both types of events for the environment in which we
collected the data set.

B. Occlusion Model
When an existing track cannot be confirmed by an

observation, the system has to decide if the track is
still in the surveilled area or not. In such a situation
we can distinguish four cases: occlusion, interaction,
missed detection, and track termination. This subsection
deals with a model for the former three cases, track
termination is considered in the next subsection.

Occlusions occur when (far apart) targets or static
objects occult other targets. Interactions are situations
in which close targets interact with each other, poten-
tially changing their behavior, and appear as a single
observation. These events are different from detection
failures that typically happen with a probability that
does not depend on the past, while occlusions and inter-
action usually occur in an interval of time. In fact, while

Fig. 3. Visualization of the occlusion model for an example scene.
Black dots mark the laser end points connected by a black line
that indicates the border of the visible area. State uncertainties and
trajectories of four persons are shown with colored circles and dots.
The small dots are particles drawn from the state predictions. They
are colored in green when they are inside the visible area and red
when they are occluded. Blue particles fall outside the sensor field
of view which is limited to 180 degrees. The occlusion probabilities
of the tracks are, from left to right, 0.42, 0.16, 0.69, and 0.47.

missed detection can be handled well by data association
techniques with delayed decision taking such as MHT [16]
or Markov chain methods [17], lengthy interactions and
occlusions are notoriously challenging when targets are
identical in appearance.

The model proposed in this section aims to explain
occlusions by the geometry of the scene, i.e. when people
are hidden by other people or objects. Two aspects need
to be considered. First, how to encode the visibility of
the scene in some representation Mocc . Authors have
approached this with either simple visibility checks [4],
[9] or more complex occlusion maps [3], [10]. In our case,
Mocc is given by the contour derived from the laser points
of the current scan.

The second aspect is the knowledge about the target
position. Unlike [10] where only the first moments in a
non-probabilistic manner are considered, the occlusion
probability should also depend on the uncertainty of the
expected target position. Thus, the targets are predicted
given their past location xt−1 according to the motion
model p(xt|xt−1). Following a sample-based approach
similar to [5], [9], we determine the occlusion probability
for a track ti as

pocc(ti |Mocc) ≈
1
N

N∑
j=1

pocc(x(j) |Mocc), (3)

where N is the number of samples and x(j) is drawn from
p(xt|xt−1) of track ti. Figure 3 shows an example scene
and the behavior of the occlusion model.

C. Deletion Model

When targets disappear from the sensor field of view,
their tracks need to be declared as obsolete. Otherwise
they inflate the system and unnecessarily increase the
level of data association ambiguity. As discussed in sec-
tion II, the common approaches are either a constant
deletion probability as in [11] or to update some score for
tracks that have not been confirmed through a sequence
of steps and delete them if a threshold is exceeded [5],
[8], [3], [12]. While both approaches have been shown
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to be practical in the past, these models consider track
deletions in isolation and not jointly with track occlusions
although they both try to explain non-detections of
existing tracks. Therefore, the only alternative reasons
for tracks being not confirmed in such an isolated model
are missed detections. Similar to the approach in [5], we
model the deletion probability of a track with an expo-
nential function to simulate the decay in the probability
of detecting it when it has not been matched for several
consecutive iterations. More formally, let t − t0 be the
number of consecutive timesteps that target ti has not
been observed, the deletion probability is defined as

pdel(ti) = 1− exp

(
− t− t0
λdel

)
, (4)

where λdel is the speed of the decay process. The theo-
retical insight of this model is that Eq. 4 represents the
cumulative density function of an exponential distribu-
tion with parameter 1/λdel . This exponential distribu-
tion thus represents the probability distribution of the
interarrival times of observations – following a Poisson
process model for observations. The deletion probability
is then the natural result for the probability of not having
observed the track after a certain duration.

IV. Multi-Hypothesis Tracking of People

In this section, we show how the presented models are
integrated into the tracking framework.

The MHT algorithm hypothesizes about the state of
the world by considering all statistically feasible assign-
ments between measurements and tracks and all possi-
ble interpretations of measurements as false alarms or
new track and tracks as matched, occluded or obsolete.
Thereby, the MHT handles the entire life-cycle of tracks
from creation and confirmation to occlusion and deletion.
In the original paper by Reid [11], measurements can be
interpreted as matches with existing tracks, new tracks,
or false alarms. Tracks are interpreted as detected when
they match with a measurement or not detected. Cox et
al. [16] extend this framework with the interpretation of
tracks as deleted and Arras et al. [6] extend the MHT
framework to multiple track interpretations including
occlusions.

Formally, let Ωt
l be the l-th hypothesis at time t and

Ωt−1
p(i) the parent hypothesis from which Ωt

l was derived.
Let Z(t) = {zi(t)}mt

i=1 be the set of mt measurements
which in our case is the set of detected people in the
laser data. Let further ψi(t) denote a set of assignments
which associates predicted tracks to measurements in
Z(t) and let Zt be the set of all measurements up to
time t. Starting from a hypothesis of the previous time
step, called a parent hypothesis Ωt−1

p(i), and a new set Z(t),
there are many possible assignment sets ψ(t), each giving
birth to a child hypothesis that branches off the parent.

The probability of the hypothesis is recursively calcu-
lated as the product of a normalizer η, a measurement

likelihood, an assignment set probability and the parent
hypothesis probability

p(Ωt
l | Zt) = η · p(Z(t) | ψi(t),Ωt−1

p(i)) (5)

p(ψi(t) | Ωt−1
p(i), Z

t−1) · p(Ωt−1
p(i) | Z

t−1),

where the last term is the probability of the parent
hypothesis which is known from the previous iteration.

For the measurement likelihood, it is assumed that a
measurement zi(t) associated to track tj has a Gaus-
sian pdf centered on the measurement prediction ẑj(t)
with innovation covariance matrix Sij(t), N (zi(t)) :=
N (zi(t) ; ẑj(t), Sij(t)). The regular MHT now assumes
that the pdf of a measurement belonging to a new track
or false alarm is uniform in V , the sensor field of view,
with probability V −1. Thus

p(Z(t) | ψi(t),Ωt−1
p(i)) = V −(Nfal+Nnew ) ·

Mt∏
i=1

N (zi(t))δi ,

(6)
with Nfal and Nnew being the number of measurements
labeled as false alarms and new tracks, respectively. δi is
an indicator variable being 1 if measurement i has been
associated to a track, and 0 otherwise.

The original expression for the assignment set proba-
bility can be shown to be [6]

p(ψi(t) | Ωt−1
p(i), Z

t−1) = η′ · pNdet

det · pNocc
occ · pNdel

del (7)

λNnew
new · λNfal

fal · V (Nfal+Nnew ),

where Ndet , Nocc , and Ndel are the number of matched,
occluded and deleted tracks, respectively. The param-
eters pdet , pocc , and pdel denote the constant proba-
bilities of matching, occlusion and deletion subject to
pdet + pocc + pdel = 1. Again, the regular MHT assumes
that the number of new tracks Nnew and false alarms
Nfal both follow a fixed rate Poisson distribution with
expected number of occurrences λnewV and λfalV in the
observation volume V .

A. Integration into the MHT

The integration of the presented models is particularly
simple in the case of the MHT. The fixed rates λnewV
and λfalV are substituted by the learned and normalized
rate functions λnew (zi(t), t) and λfal(zi(t), t) from Eq. 2
where zi(t) is the position of observation i at time t. The
track dependent terms pocc and pdel also go directly into
the final expression for a hypothesis probability

p(Ωt
l | Zt) = η′′ · p(Ωt−1

p(i) | Z
t−1) · pNdet

det (8)
Nt∏
i=1

[
(N (zi(t))µi · (pi

occ)
ωi · (pi

del)
δi

]
Mt∏
i=1

[
λnew (zi(t), t)νi · λfal(zi(t), t)φi

]
,

where µi, ωi, and δi are indicator variables whether a
track is matched to a measurement, occluded or marked
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as deleted, respectively. The indicator variables νi and φi

select when a measurement is declared as a new track or
false alarm. The probabilities pi

occ and pi
del are calculated

with the occlusion and deletion models described above.
For all tracks pdet , pi

occ and pi
del have to be normalized

to sum up to one.

V. Experiments

The experiments were carried out on a large, un-
scripted outdoor data set collected in the city center
of Freiburg during a regular work day. It consists of
55,475 frames recorded over 25 minutes. The sensor
used for collecting the data is a fixed laser range finder
with an angular resolution of 0.5 degree, mounted at a
height of 0.85 meter. We chose a fairly busy crossing
of alleys that is used by individuals, couples, groups of
people, bicycles, cars, people in wheelchairs, subjects on
skates and person-shaped static obstacles that all un-
dergo countless occlusions (see also Fig. 1 and Fig. 4). We
manually labeled 10,000 frames with 162 person tracks
to determine the ground truth detections and ground
truth data associations. The data sets are available on
the author’s home page.

A fixed parameter MHT serves as baseline in our
experiments. The parameters for detections, occlusions,
deletions and the fixed rates for false alarms and
new tracks have been learned from another training
data set with 95 tracks over 28,242 frames. In detail,
pdet = 0.7, pocc = 0.27, pdel = 0.03, λnew = 0.0002, and
λfal = 0.005, respectively. As person detector we use
the boosted feature approach presented in [18] which
computes a set of geometrical and statistical features for
groups of laser points and creates a strong classifier based
on decisions stumps as weak learners. This classifier has
also been learned from a separate training set.

For the spatial Poisson process model for new tracks
and false alarms, we use a 30 cm cell resolution. The
rate functions are learned using the baseline tracker
and the labeled detection ground truth. The occlusion
model uses 200 samples per track, the deletion model
a decay parameters of λdel = 20. All experiments are
conducted with Nhyp = 300 hypotheses. Nhyp has been
varied between 50 and 1050 to verify the behavior in all
runs which was found to be stable.

To compare the impact of the presented models onto
the tracking performance we first test the individual
models against the baseline tracker and then the combi-
nations that makes sense. The accuracy of the resulting
strategies is then measured using the CLEAR MOT
metrics proposed by Bernardin et al. [15]. The metric
counts three numbers with respect to the ground truth
that are incremented at each frame: misses (missing
tracks that should exist at a ground truth position, FN),
false positives (tracks that should not exist, FP), and
mismatches (track identifier switches, ID). The latter
value quantifies the ability to deal with occlusion events
that typically occur when tracking people. From these

Model(s) FN FP ID MOTA Hz

baseline 2979 3996 290 0.729 12.6

occlusion 2049 6018 223 0.692 11.7

deletion 1957 6843 225 0.665 11.6

new track 3422 3112 228 0.735 14.8

false alarms 3426 3271 270 0.742 15.1

occ + del 1821 6903 211 0.668 10.4

new + false 3761 1971 210 0.779 15.4

all 2276 2563 133 0.817 12.4

TABLE I

CLEAR MOT results on the Freiburg city center data set.

numbers, two values are determined: MOTP (avg. metric
distance between estimated targets and ground truth)
and MOTA (avg. number of times of a correct tracking
output with respect to the ground truth). We ignore
MOTP as it is based on a metric ground truth of target
positions which is unavailable in our data. Note that, for
people tracking, the three error types, FN, FP, and ID,
are not equally important. The key challenge of a peo-
ple tracker, according to our experience, is to maintain
the identity of tracks through occlusions, misdetections,
interactions and maneuvers. Delayed track termination
of people that leave the field of view or delayed track
creation are, compared to this, less relevant aspects.

The results of the comparison are given in Table I
which contains the CLEAR MOT values and the average
cycle time in Hz for the baseline tracker, the isolated
models and their combination.

A. Discussion of the results
The occlusion and deletion models explain tracks not

assigned to any observation due to missing detections
from detector failures or occlusions. The results show
that the models are able to fill such detection gaps
and reduce the number of misses (FN) to 1821 from
2979 of the baseline that wrongly terminates many of
these tracks. They also reduce the number of mismatches
(ID) to 211 where the baseline incorrectly recreates new
tracks. However, this comes at the expense of a higher
number of false positives (6903) as incorrect detections
(e.g. trees) are also retained more persistently, increasing
the FP count at every frame.

The new track and false alarm models explain obser-
vations not assigned to any track. The learned place-
dependent rate functions for the appearance of new
tracks and false alarms enable them to bring down
the values for false positives (FP) since the functions
implement a form of background learning that removes
systematic misdetections (1971 vs. 3996 for the baseline).
They also improve the number of mismatches (to 210)
as during data association, the system can take better,
place-dependent decisions on track creations e.g. after
occlusion events. This comes at the expense of a conser-
vative track creation behavior for sporadically recognized
targets that enter the field of view (FN increases to 3761).

In summary, the isolated models are only able to
make selective improvements, trading off the different
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Fig. 4. Four images of the experiment carried out in the city
center of Freiburg. The information of the laser range finder and the
tracking system were projected onto a recorded video sequence. The
images show the tracking results at t = 335, 353, 365 and 381. Laser
points are shown as green dots (background) or red dots (detected
people). Colored ellipses show the traces of the people tracks.

performance aspects. The combination of all models is
able to resolve these trade-offs to most parts. While
the FN and FP numbers are higher compared to the
combination of the specialized models, the most relevant
figure, ID, is reduced to 133 which is an improvement of
more than a factor of two over the baseline.

This encouraging result comes at practically no ad-
ditional costs. Compared to the cost of the MHT data
association machinery, the computational effort for all
models, including the occlusion model that employs sam-
pling, are negligible. This is particularly true for the new
track and false alarm model that replace a fix Poisson
rate by a learned function, simply realized by a lookup
into a grid. The cycle time differences in Table I are due
to the behavior differences of the tracking system caused
by the models. For instance, more false positive tracks
inflate the system and raise the level of data association
ambiguity, which in turn, leads to a slower tracker.

VI. Conclusions

In this paper we presented and compared informed
target and detector models for the task of tracking peo-
ple. The models overcome the rather generic assumptions
in related work and have been shown to significantly
improve tracking performance.

In the experiments using a large-scale outdoor data
set and a recently introduced performance metric, we
systematically evaluated the impact of the models indi-
vidually and in combination. We found that the com-
bined application of all models performs best as it is
able to resolve the trade-offs introduced by some of the
models applied in isolation. The combination leads to an
improvement in terms of track identity confusions – the
aspect that is most relevant for people tracking – of more
than a factor of two at no additional cost. This has been
achieved by integrating a set of rather easy-to-use models

leaving the much more complex filtering, data association
or target detector machineries unaltered.
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