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Abstract
People detection and tracking are important in many situations where robots and humans work and live together. But
unlike targets in traditional tracking problems, people typically move and act under the constraints of their environment.
The probabilities and frequencies for when people appear, disappear, walk or stand are not uniform but vary over space
making human behavior strongly place-dependent. In this paper we present a model that encodes spatial priors on human
behavior and show how the model can be incorporated into a people-tracking system. We learn a non-homogeneous spatial
Poisson process that improves data association in a multi-hypothesis target tracker through more informed probability
distributions over hypotheses. We further present a place-dependent motion model whose predictions follow the space-
usage patterns that people take and which are described by the learned spatial Poisson process. Large-scale experiments
in different indoor and outdoor environments using laser range data, demonstrate how both extensions lead to more
accurate tracking behavior in terms of data-association errors and number of track losses. The extended tracker is also
slightly more efficient than the baseline approach. The system runs in real-time on a typical desktop computer.

Keywords
Cognitive robotics, human-centered and life-like robotics, learning and adaptive systems, sensing and perception computer
vision, social human–robot interaction, visual tracking

1. Introduction

As robots start to enter domains in which they interact and
cooperate closely with humans, people tracking is becom-
ing a key technology for areas such as human–robot inter-
action, human activity understanding or intelligent cars.
In contrast to most airborne and waterborne targets, peo-
ple typically move and act under environmental and social
constraints. These constraints vary over time and space,
making possible motion and action patterns strongly place-
dependent. Examples include walls through which people
cannot walk or a cooking stove, which limits the activity of
cooking to a specific place, etc.

In this paper we learn and represent human spatial
behavior for the purpose of people tracking. By learn-
ing a spatial model that represents activity events in a
global reference frame and on large time scales, the robot
acquires place-dependent priors on human behavior. As
we will demonstrate, such priors can be used to better
hypothesize about the state of people in the world, and to
make place-dependent predictions of human motion that
reflect how people are actually using space. We propose a
non-homogeneous spatial Poisson process to represent the
spatially varying distribution over relevant human-activity
events. This representation, called a spatial affordance map,

holds space-dependent Poisson rates for the occurrence
of track events such as creation, confirmation or false
alarm. The map is then incorporated into a multi-hypothesis
tracking framework using data from a laser range finder.

In most related work on laser-based people tracking
(Kluge et al. 2001; Fod et al. 2002; Kleinhagenbrock et al.
2002; Schulz et al. 2003; Cui et al. 2005; Topp and Chris-
tensen 2005; Mucientes and Burgard 2006), a person is
represented as a single state that encodes torso position
and velocity. People are extracted from range data as sin-
gle blobs or found by merging nearby point clusters that
correspond to legs. People tracking has also been addressed
as a leg-tracking problem (Taylor and Kleeman 2004; Cui
et al. 2006; Arras et al. 2008) where people are represented
by the states of both legs, either in a single augmented state
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(Cui et al. 2006) or as a high-level track to which two low-
level leg tracks are associated (Taylor and Kleeman 2004;
Arras et al. 2008).

Different tracking and data-association approaches have
been used for laser-based people tracking. The nearest-
neighbor filter and variations thereof are typically employed
in earlier works by Fod et al. (2002), Kluge et al. (2001) and
Kleinhagenbrock et al. (2002). A sample-based Joint Proba-
bilistic Data Association Filter (JPDAF) has been presented
by Schulz et al. (2003) and adopted by Topp and Chris-
tensen (2005). And in Khan et al. (2006) a Markov chain
Monte Carlo (MCMC)-based auxiliary variable particle fil-
ter is proposed. The Multi-Hypothesis Tracking (MHT)
approach according to Reid (1979) and Cox and Hingo-
rani (1996) has been used by Taylor and Kleeman (2004),
Mucientes and Burgard (2006) and Arras et al. (2008).
What makes MHT an attractive choice is that it belongs to
the most general type of data-association techniques. The
method generates joint compatible assignments, integrates
them over time, and is able to deal with track creation,
confirmation, occlusion, and deletion events in a probabilis-
tically consistent way. Other multi-target data-association
techniques such as the global nearest-neighbor filter, the
track-splitting filter, JPDAF or PMHT by Streit and Lug-
inbuhl (1995) are suboptimal in nature as they simplify the
problem (Bar-Shalom and Li 1995; Blackman 2004). For
these reasons, MHT has become a widely accepted tool
in the target-tracking community, as pointed out by Black-
man (2004), especially for problems with a low to medium
number of targets.

For people tracking, however, the MHT approach relies
on statistical assumptions that are overly simplified and
do not account for place-dependent target behavior. The
approach assumes that new tracks and false alarms are uni-
formly distributed in the sensor’s field of view with fixed
Poisson rates. While this might be acceptable in the settings
for which the approach was originally developed (using,
e.g., radar or underwater sonar), it does not account for the
non-random usage of an environment by people. Human
subjects appear, disappear, walk or stand at specific loca-
tions. False alarms are also more likely to arise in areas with
cluttered backgrounds rather than in open spaces. A simple
form of place-dependency has been realized in Breitenstein
et al. (2009), a visual surveillance scenario with a static
camera, where a frame around the border of the image was
manually positioned to indicate the area where new tracks
may appear. In the center of the image, no new tracks are
assumed to arrive. In this paper, we extend prior work by
incorporating learned distributions over track-interpretation
events in order to support data association and show how a
non-homogeneous spatial Poisson process can be used to
seamlessly extend the MHT approach for this purpose.

For motion prediction of people, most researchers
employ the Brownian motion model and the constant-
velocity motion model. The former makes no assumptions

about the target dynamics, the latter assumes linear tar-
get motion. Better motion models for people tracking have
been proposed by Bruce and Gordon (2004) and Liao et al.
(2003).

Bruce and Gordon (2004) learn goal locations in an envi-
ronment from people trajectories obtained by a laser-based
tracker. Goals are found as end points of clustered trajec-
tories. Human motion is then predicted along paths that a
planner generates from the location of people being tracked
to the goal locations. The performance of the tracker was
improved in comparison to a Brownian motion model. Liao
et al. (2003) extract a Voronoi graph from a map of the
environment and represent the states of people as the edges
of that graph. This allows them to predict the motion of
people along edges that follow the topological shape of the
environment.

With maneuvering targets, a single model can be insuf-
ficient to represent the target’s motion. Multiple model-
based approaches in which different models run in paral-
lel and describe different aspects of the target’s behavior
are a widely accepted technique to deal with maneuvering
targets, of note is the Interacting Multiple Model (IMM)
algorithm (for a survey, see Mazor et al. 1998). Different
target-motion models have also been studied by Kwok and
Fox (2005). The approach is based on a Rao–Blackwellized
particle filter to model the potential interactions between
a target and its environment. The authors define a discrete
set of different target-motion models from which the filter
draws samples. Then, conditioned on the model, the target
is tracked using Kalman filters.

Regarding motion models, our approach extends prior
work in two aspects: learning and place-dependency. In
contrast to Liao et al. (2003) and Kwok and Fox (2005) and
IMM-related methods, we do not rely on predefined motion
models but apply learning for this task in order to acquire
place-dependent models. In Liao et al. (2003), the positions
of people are projected onto a Voronoi graph, which is a
topologically correct but metrically poor model for human
motion. While sufficient for the purpose of their work, there
is no insight into why people move on a Voronoi set, partic-
ularly in open spaces whose topology is not well defined.
Our approach, by contrast, tracks the actual position of
people and predicts their motion according to metric, place-
dependent models. Contrary to Bruce and Gordon (2004)
where motion prediction is made along paths that a planner
creates to a set of goal locations, our learning approach pre-
dicts motion along the trajectories that people are actually
following.

The paper is structured as follows: the next section gives
a brief overview of the people tracker that will later be
extended, introducing the theory of the spatial affordance
map and expressions for learning its parameters. Section
3 describes how the map is used to improve data associa-
tion from refined probability distributions over hypotheses,
while Section 4 presents the theory of the place-dependent
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motion model. Section 5 presents the experimental results
followed by the conclusions in Section 6.

2. Spatial affordance map

We pose the problem of learning a spatial model of human
behavior as a parameter-estimation problem of a non-
homogeneous spatial Poisson process. The resulting model,
called a spatial affordance map, is a global long-term repre-
sentation of human-activity events in an environment. The
name lends itself to the concept of affordances as we con-
sider the possible sets of human actions and motions as
a result of environmental constraints. An affordance is a
resource or support that an object (the environment) offers
an (human) agent for action. This section describes the
theory and how learning in the spatial affordance map is
implemented.

A Poisson distribution is a discrete distribution of the
probability of a certain number of events given an expected
average number of events over time or space. The parame-
ter of the distribution is the positive real number λ, the rate
at which events occur per time or volume unit. As we are
interested in modeling events that occur randomly in time,
the Poisson distribution is a natural choice.

Based on the assumption that events in time occur inde-
pendently of one another, a Poisson process can deal with
distributions of time intervals between events. Let N( t) be
a discrete random variable, which represents the number of
events occurring up to time t with rate λ. Then, N( t) follows
a Poisson distribution with parameter λt

P( N( t) = k) = e−λt( λt)k

k!
k = 0, 1, . . . (1)

In general, the rate parameter may change over time. In this
case, the generalized rate function is given as λ( t) and the
expected number of events between times a and b is

λa,b =
∫ b

a
λ( t) dt. (2)

A homogeneous Poisson process is a special case of a non-
homogeneous process with constant rate λ( t) = λ.

The spatial Poisson process introduces a spatial depen-
dency on the rate function given as λ( x, t) with x ∈ X where
X is a vector space such as R

2 or R
3. For any subset S ⊂ X

of finite extent (e.g. a spatial region), the number of events
occurring inside this region can be modeled as a Poisson
process with associated rate function λS( t) such that

λS( t) =
∫

S
λ( x, t) dx. (3)

If this generalized rate function is a separable function of
time and space, we have

λ( x, t) = f ( x) λ( t) (4)

for some function f ( x) for which we can demand
∫

X
f ( x) dx = 1 (5)

without loss of generality. This particular decomposition
allows us to decouple the occurrence of events between time
and space. Given Equation (5), λ( t) defines the occurrence
rate of events, while f ( x) can be interpreted as a probability
distribution for where an event occurs in space.

Learning the spatio-temporal distribution of events in
an environment is equivalent to learning the generalized
rate function λ( x, t). However, learning the full continuous
function is a highly expensive process. For this reason, we
approximate the non-homogeneous spatial Poisson process
with a piecewise homogeneous one. The approximation is
performed by discretizing the environment into a bidimen-
sional grid, where each cell represents a local homogeneous
Poisson process with a fixed rate over time,

Pij( k) = e−λij ( λij)k

k!
k = 0, 1, . . . (6)

where λij is assumed to be constant over time. Finally,
the spatial affordance map is the generalized rate function
λ( x, t) using a grid approximation,

λ( x, t) �
∑

(i,j)∈X

λij1ij( x) (7)

with 1ij( x) being the indicator function defined as 1ij( x) = 1
if x ∈ cellij and 1ij( x) = 0 if x /∈ cellij. This type of
approximation is not imperative and there is no loss of gen-
erality. Other space tessellation techniques such as graphs,
quadtrees or arbitrary regions with homogeneous Poisson
rates can equally be used. The subdivision of space into
regions of fixed Poisson rates has the property that the
preferable decomposition in Equation (4) holds.

Each type of human-activity event can be used to learn
its own probability distribution in the map. We can, there-
fore, think of the map as a representation with multiple
layers, one for each type of event. For the purpose of this
paper, the map has three layers, one for new tracks, one
for matched tracks, and one for false alarms. The first layer
represents the distribution and rates of people appearing in
the environment. The second layer can be considered as a
space-usage probability and contains a walkable-area map
of the environment. The false-alarm layer represents the
place-dependent reliability of the detector.

2.1. Learning

In this section we show how to learn the parameter of a sin-
gle cell in our grid from a sequence K1..n of n observations
ki ∈ {0, 1}. We use Bayesian inference for parameter learn-
ing, since the Bayesian approach can provide information
on cells via a prior distribution. We model the parameter λ
using a Gamma distribution, as it is the conjugate prior of
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the Poisson distribution. Let λ be distributed according to
the Gamma density, λ ∼ Gamma(α,β) , parametrized by
the two parameters α and β,

Gamma( λ;α,β) = βα

�(α)
λα−1e−β λ for λ > 0. (8)

Then, learning the rate parameter λ consists of estimat-
ing the parameters of a Gamma distribution. At discrete
time index i, the posterior probability of λi according to
Bayes’ rule is computed as P( λi|K1..i) ∼ P( ki|λi−1) P( λi−1)
with P( λi−1) = Gamma(αi−1,βi−1) being the prior and
P( ki|λi−1) = P( ki) from Equation (6) the likelihood. Then
by substitution, it can be shown that the update rules for the
parameters are αi = αi−1 + ki and βi = βi−1 + 1. The pos-
terior mean of the rate parameter in a single cell is finally
obtained as the expected value of the Gamma,

λ̂Bayesian = E[λ] = α

β
= #positive events + 1

#observations + 1
. (9)

For i = 0 the quasi-uniform Gamma prior for α = 1, β = 1
is taken. The advantages of the Bayesian estimator are that
it provides a variance estimate, which is a measure of confi-
dence of the mean and that it allows proper initialization of
never-observed cells.

Given the learned rates we can estimate the space distri-
bution of the various events. This distribution is obtained
from the rate function of our spatial affordance map λ( x, t).
While this estimation is hard in the general setting of a non-
homogeneous spatial Poisson process, it becomes easy to
compute if the separability property of Equation (4) holds.1

In this case, the probability distribution function (pdf), f ( x),
is given by

f ( x) = λ( x, t)

λ( t)
(10)

where λ( x, t) is the spatial affordance map. The denomina-
tor, λ( t), can be obtained from the map by substituting the
expression for f ( x) into the constraint defined in Equation
(5). Hence,

λ( t) =
∫

X
λ( x, t) dx. (11)

In our grid, those quantities are computed as

f ( x) =
∑

(i,j)∈X λij1ij( x)∑
(i,j)∈X λij

. (12)

If there are several layers in the map, each layer contains
the distribution f ( x) of the respective type of events. Note
that learning in the spatial affordance map is simply realized
by counting in a grid. This makes life-long learning partic-
ularly straightforward as new information can be added at
any time by one or multiple robots.

Figure 1 shows two layers of the spatial affordance
map of our laboratory, learned during the first experiment
described in Section 5. The picture on the left shows the
space-usage distribution of the environment. The modes

in this distribution correspond to often used places and
correspond to goal locations in that room (three desks
and a couch). On the right, the distribution of new tracks
is depicted. Peaks indicate locations where people appear
(doors). The reason for the small peaks at locations other
than the doors is that when subjects interact with objects (sit
on a chair, lie on the couch), the tracker loses them. When
they re-enter the space, they are detected as new tracks.

3. Data association with spatial-target
priors

Many tracking approaches rely on rather simple models
for new-track and false-alarm events and ignore impor-
tant information that is available from the environment. For
example, the MHT approach assumes a Poisson distribution
for the occurrences of new tracks and false alarms over time
and a uniform probability of these events over space within
the sensor’s field of view V . While this is a valid assumption
for a radar aimed upwards into the sky, it does not account
for the place-dependent character of human behavior. The
way that people move is often due to environmental con-
straints that can be learned. Indoors, for instance, doors or
convex corners are typical places where people appear. This
place-dependency is seen by a detector. Regions of clutter
and complex background produce false alarms more often
than in open space, making a spatially uniform model a poor
approximation.

The spatial affordance map correctly holds the necessary
information. In this paper we extend the original MHT of
Reid (1979) and Cox and Hingorani (1996) with spatial pri-
ors and show that the map allows for a seamless integration
into the MHT framework. In particular, we replace the tem-
poral fixed-rate models for new tracks and false alarms by
the learned Poisson rates for arrival events of people and
false detections, and the spatial uniform probability with
the learned location statistics.

We will first give a short outline of the regular MHT
approach. In summary, the MHT hypothesizes about the
state of the world by considering all statistically feasible
assignments between measurements and tracks and all pos-
sible interpretations of measurements as false alarms or
new tracks, and tracks as matched, occluded or obsolete.
A hypothesis �t

i is one possible set of assignments and
interpretations at time t.

Let Z( t) = {zi( t) }mt
i=1 be the set of mt measurements,

which in our case is the set of people detected in the laser
data. For detection, we use a learned classifier based on a
collection of boosted features, see Arras et al. (2007). Let
ψi( t) denote a set of assignments that associates predicted
tracks with measurements in Z( t), and let Zt be the set of all
measurements up to time t. Starting from a hypothesis of the
previous time step, called a parent hypothesis �t−1

p(i) , and a
new set Z( t), there are many possible assignment sets ψ( t),
each giving birth to a child hypothesis that branches off
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Fig. 1. Spatial affordance map of the laboratory in experiment 1. The probability distribution of matched track events is shown on the
left, the distribution of new track events is shown on the right. The marked locations in each distribution (extracted with a peak finder
and visualized by contours of equal probability) have different meanings. On the left they correspond to places that are often visited by
people (three desks and a couch), while the maxima of the new-track distribution (right) denote locations where people appear in the
sensor’s field of view (two doors, the couch and a desk).

the parent. This creates a hypothesis tree that grows expo-
nentially. For a real-time implementation, the growing tree
needs to be pruned. To guide the pruning, each hypothesis
receives a probability, recursively calculated as the product
of a normalizer η, a measurement likelihood, an assignment
set probability and the parent hypothesis probability,

p
(
�t

i | Zt
) = η · p

(
Z( t) | ψi( t) ,�t−1

p(i)

)

p
(
ψi( t) | �t−1

p(i) , Zt−1
)

· p
(
�t−1

p(i) | Zt−1
)

. (13)

While the last term is known from the previous iteration,
the two expressions that will be affected by our exten-
sion are the measurement likelihood and the assignment set
probability.

For the measurement likelihood, we assume that a mea-
surement zi( t) associated with a track tj has a Gaus-
sian pdf centered on the measurement prediction ẑj( t)
with innovation covariance matrix Sij( t), N ( zi( t) ) :=
N ( zi( t) ; ẑj( t) , Sij( t) ). The regular MHT now assumes that
the pdf of a measurement belonging to a new track or
false alarm is uniform in V , the sensor’s field of view, with
probability V−1. Thus

p
(

Z( t) | ψi( t) ,�t−1
p(i)

)
= V−(NF+NN ) ·

mt∏
i=1

N ( zi( t) )δi (14)

with NF and NN being the number of measurements labeled
as false alarms and new tracks, respectively. Here δi is an
indicator variable being 1 if measurement i is associated
with a track, and 0 otherwise.

Given the spatial affordance map, the term changes as
follows. The probability of new tracks V−1 can now be
replaced by

pN ( x) = λN ( x, t)

λN ( t)
= λN ( x, t)∫

V λN ( x, t) dx
(15)

where λN ( x, t) is the learned Poisson rate of new tracks
in the map and x the position of measurement z′

i( t) trans-
formed into global coordinates. Given our grid, Equation
(15) becomes

pN ( x) = λN ( z′
i( t) , t)∑

(i,j)∈V λij,N
. (16)

The probability of false alarms pF( x) is calculated in the
same way using the learned Poisson rate of false alarms
λF( x, t) in the map. Although the theory presented so far
is general, in this paper we assume the behavior of peo-
ple when appearing and the false-positive statistics of the
detector are time-invariant, and, therefore, the Poisson pro-
cess is only non-homogeneous over space. The rate param-
eters λN ( x, t) and λF( x, t) then become λN ( x) and λF( x),
respectively.

As presented by Arras et al. (2008), the expression for
the assignment set probability in the MHT can be shown to
be

p
(
ψi( t) | �t−1

p(i) , Zt−1
)

= η′ · pNM
M · pNO

O · pND
D ·

λ
NN
N · λNF

F · V (NF+NN ) (17)

where NM , NO and ND are the number of matched, occluded
and deleted tracks, respectively. The parameters pM , pO and
pD denote the probability of matching, occlusion and dele-
tion and pM +pO +pD = 1. The regular MHT now assumes
that the number of new tracks NN and false alarms NF

both follow a fixed-rate Poisson distribution with expected
number of occurrences λN V and λFV in the observation
volume V .

Given the spatial affordance map, they can be replaced
by rates from the learned spatial Poisson process with rate
functions λN ( t) and λF( t), respectively.

Substituting the modified terms back into Equation (13)
means that, as in the original approach, many terms
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cancel out leading to an easy-to-implement expression for
the hypothesis probability

p
(
�t

i | Zt
) = η′′ · pNM

M · pNO
O · pND

D ·
mt∏

i=1

[
N ( zi( t) )δi ·

λN ( z′
i( t) )κi ·λF( z′

i( t) )φi

]
· p

(
�t−1

p(i) | Zt−1
)

(18)

with δi and κi being indicator variables for whether a track
is matched to a measurement or is new, respectively, and
φi indicating if a measurement is declared to be a false
alarm.

The insight into this extension of MHT is that we replace
fixed parameters by spatial priors on human behavior in the
form of learned spatial rate functions. As we will show,
this domain knowledge will lead to refined probability dis-
tributions over hypotheses and helps the tracker to better
interpret measurements and tracks. This extension comes at
no additional runtime costs.

4. Place-dependent motion model

People are highly dynamic targets to track. They can
abruptly stop, turn back, left or right, make a sideways step
or accelerate. However, human motion is not random but
follows place-dependent patterns typically formed by the
environment: people turn around convex corners, maneu-
ver around obstacles, stop in front of doors and do not go
through walls. The Brownian model, the constant-velocity
and even higher-order motion models are clearly unable to
capture the complexity of these movements. In addition to
this, people often undergo lengthy occlusion events during
interaction with each other or with the environment. In this
section we propose a place-dependent motion model for
short-term predictions of maneuvering targets. It relies on
learned human-motion priors in order to account for this
complexity.

Formally, this means that the motion model p( xt|xt−1, m)
becomes conditioned on both the previous track state xt−1

and the walkable-area map m obtained by clipping the
space-usage probability defined in Equation (12) at a given
probability. It describes a general density that follows the
shape and topology of the environment, poorly described
by a parametric distribution such as a Gaussian. We, there-
fore, follow a sampling approach and represent our target
distribution with a set of weighted samples

p( xt|xt−1, m) �
∑

i

w(i)
t δx

(i)
t

( xt) (19)

where δ
x

(i)
t

( xt) is the impulse function centered on x(i)
t .

Sampling directly from the distribution p( xt|xt−1, m) is
intractable in practice, which is why we take a Monte Carlo
approach, in which samples are first drawn from a proposal
distribution π and then evaluated according to the mismatch

between the target distribution τ and the proposal distribu-
tion. In our case, the distribution is approximated by the
following factorization

p( xt|xt−1, m) � p( xt|xt−1) ·p( xt|m) (20)

and we adopt the natural choice by using a motion model
p( x(i)

t |xt−1) as our proposal distribution and evaluate the
samples according to

w(i)
t = p( xt|xt−1, m)

p( x(i)
t |xt−1)

= p( x(i)
t |m) . (21)

In other words, samples are first distributed into the state
space following the motion model p( x(i)

t |xt−1) and then
weighted according to the map m.

For p( x(i)
t |xt−1), we take the curvilinear model of Best

and Norton (1997). This motion model is simple, yet is
one of the most sophisticated target-maneuver models in
2D as pointed out by Rong Li and Jilkov (2003). It accounts
for both (cross-track) normal and (along-track) tangential
target accelerations. As illustrated in Figure 2, constant-
velocity and constant-turn motion follow as special cases.
Let x(i)

t =( xt yt ẋt ẏt)T be the state of particle i at discrete
time t, at =( at an)T the vector of tangential and normal
accelerations, and Acv the transition matrix of the constant-
velocity model, then the particle states evolve according
to

x(i)
t+1 = Acv x(i)

t + Gt( a(i)
t + qt) (22)

with qt being zero-mean Gaussian noise with covariance
matrix Qt. Further details of the 4 × 2 forcing matrix Gt

can be found in Best and Norton (1997).
At each discrete time t and for each track, samples are

drawn from the posterior state estimate ( xt, �t) and sent
into different directions by randomizing the accelerations
at by a noise with covariance Qt = diag[σ 2

at
, σ 2

an
] (see

Figure 2, right). When an occlusion event occurs, the par-
ticles will evolve through Equation (22) and are weighted
and resampled according to the strategy described below.

Even a sophisticated motion model can strongly differ
from our target distribution, especially at places where the
walkable area is highly constrained by the environment.
This means that many samples fall into low probability
regions leading to the known problem of particle deple-
tion. For this reason, we follow the auxiliary particle filter
approach of Pitt and Shephard (1999), which was devel-
oped for such mismatch situations. In a nutshell, the aux-
iliary particle filter computes an improved proposal derived
from an approximated observation likelihood. In our case,
this feature can be extended to a look-ahead ability since
the map m delivers the observation likelihood that can be
probed at locations computed by forward-simulating the
motion model.

Assume that we have a set of samples at discrete time
t − 1, which represents our target distribution. The distribu-
tion at time t is then

p( xt|xt−1, m) � p( xt|m)
∑

i

p
(

xt|x(i)
t−1

)
w(i)

t−1. (23)
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n
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Fig. 2. Curvilinear-motion model according to Best and Norton (1997). Left: The model accounts for both (cross-track) normal accel-
eration an and (along-track) tangential acceleration at. Right: Sample particles over 30 steps at �t = 0.1 s, subject to white zero-mean
Gaussian noise with σat = 0.1 m s−2 and σan = 1 m s−2.

To avoid depletion, and following Pitt and Shephard
(1999), we sample from the higher dimensional distribu-
tion p( xt, k|xt−1, m), where the auxiliary variable k denotes
the index of the sample at time t − 1 in the mixture defined
above, to give

p( xt, k|xt−1, m) � p( xt|m) p
(

xt|x(k)
t−1

)
w(i)

t−1, (24)

and ignoring the sampled index, we obtain a sample from
the original target density. Equation (24) can be approxi-
mated by

g( xt, k|xt−1, m) � p
(
μ

(k)
t |m

)
p
(

xt|x(k)
t−1

)
w(i)

t−1, (25)

where μ(k)
t is the mean, the mode, a draw, or some other

value associated with the density of the p( xt|x(k)
t−1) used

to evaluate the goodness of the parent sample x(k)
t−1. The

approximated density is designed such that we can sample
from g( xt, k|xt−1, m) by first sampling the index according
to the pseudo-weight λk ∝ g( k|xt−1, m) and then sampling
from the corresponding motion model p( xt|x(k)

t−1), where

g( k|xt−1, m) =
∫

p
(
μ

(k)
t |m

)
p
(

xt|x(k)
t−1

)
w(i)

t−1 dxt (26)

= p
(
μ

(k)
t |m

)
w(i)

t−1. (27)

The weights of these new samples are finally computed by

wt =
p (xt|m) p

(
xt|x(k)

t−1

)
w(i)

t−1

p
(
μ

(k)
t |m

)
p
(

xt|x(k)
t−1

)
w(i)

t−1

= p (xt|m)
p
(
μ

(k)
t |m

) . (28)

In our case, we use the above mentioned curvilinear-motion
model to compute a look-ahead particle as the future esti-
mateμ(k)

t . This is done by propagating the kth sample l steps

into the future, that is, the sample is forward-simulated via
the motion model over a time interval l�t. The value that
is finally taken for p(μt|m) is then the value of p( xt|m)
evaluated at the position of the look-ahead particle.

Once we have obtained the new motion model in the form
of a weighted sample set, we need to integrate it into the
MHT framework. Since MHT relies on the Kalman filter
for tracking, the first two moments are computed as

μ̂ =
∑

i

w(i)x(i)
t

�̂ = 1

1 − ∑
i( w(i))2

∑
i

w(i)
(
μ̂− x(i)

t

) (
μ̂− x(i)

t

)T
.(29)

The target is then predicted using μ̂ as the state prediction
with associated covariance �̂. Obviously, the last step is not
needed when using particle filters for tracking. Sample situ-
ations that illustrate the place-dependent motion model are
shown in Figure 3.

5. Experiments

For the experiments, we collected four data sets, two in
indoor and two in outdoor environments. The data sets are
from a laboratory (Figure 4), an office building (Figure 8),
the main station of Freiburg and a busy pedestrian zone
in downtown Freiburg (Figures 5 and 6). The sensor was
a SICK LMS 291 laser scanner with an angular resolution
of 0.5◦ mounted at a height of 0.85 m with an acquisition
rate of 12 Hz.

The spatial affordance maps were trained with the base-
line MHT tracker of Cox and Hingorani (1996) with a
detection probability of pdet = 0.999, a termination like-
lihood λdel = 20, and 300 hypotheses. The parameters of
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Fig. 3. Place-dependent motion model in three sample situations. The figures show a maneuvering target that reappears after a very
long occlusion event. The background grid contains the learned space-usage probabilities of the spatial affordance map, thick black dots
are laser measurements, small dots are the look-ahead particles, and the green ellipses illustrate the weighted 99% sample covariance
from the particles. The model is able to predict the targets ‘around the corner’ and along the high-probability ridges in the map, yielding
correct motion predictions for these types of situation.

the tracker were learned from training data with 95 labeled
tracks over 28,242 frames. All data associations including
occlusions were hand-labeled. This led to a fixed Poisson
rate for new tracks λN = 0.0002 and a fixed Poisson rate of
false alarms λF = 0.0041. The rates were estimated using
the Bayesian approach in Equation (9). Care was taken to
ensure that the estimates of the expected number of events
were normalized with the sensor’s field of view V . The grid
cells of the map were chosen to be 30 cm in size. After
the learning phase, the map was assumed to be fixed. For
a pruning strategy, we employed N-scan-back logic with
a tree depth of 30 and limited the maximum number of
hypotheses to NHyp using the multi-parent variant of the
algorithm proposed by Murty (1968).

The parameters of the place-dependent motion model
were set to 300 samples, σ 2

at
= 0.1 and σ 2

an
= 0.8 for the

noise for the tangential and normal accelerations, respec-
tively, and l = 5 as a look-ahead factor to compute the
pseudo-weights λk .

The data sets including annotations are available on the
Webpage of the authors.

5.1. MHT data association with spatial target
priors

In the first experiment, the original MHT approach is com-
pared to the tracker using the spatial affordance map on the
laboratory data set of over 38,994 frames and with a total of
134 people entering and leaving the sensor’s field of view.
As mentioned, the data association ground truth of the 134
tracks was determined manually.

To compare the impact of the presented models on track-
ing performance, we first tested the individual models
against the baseline tracker and then evaluated the com-
bination of both models. The accuracy of the resulting
strategies was measured using the CLEAR MOT metric
proposed by Bernardin and Stiefelhagen (2008). The met-
ric has three numbers with respect to the ground truth
that are incremented at each frame: misses (missing tracks
that should exist at a ground truth position), false posi-
tives (tracks that should not exist), and mismatches (track
identifier switches). The latter value quantifies the ability to
deal with occlusion events. From these numbers, two values
are determined: MOTP (average metric distance between
estimated targets and ground truth) and MOTA (the aver-
age number of occurrences of the correct tracking output
with respect to the ground truth). We ignore MOTP as it is
based on a metric ground truth of target positions, which is
unavailable in our data. In order to show the evolution of
the error as a function of NHyp, which is proportional to the
computational effort, NHyp is varied from 10 to 500.

The results show a significant improvement for the
extended MHT with spatial priors over the regular
approach, especially for the number of mismatches (see
Figure 4). For NHyp = 500 the tracker made 107 fewer
id switches (192 vs. 85), the number of false positives
decreased from 4,930 to 2,624, and the number of misses
from 383 to 272. The accuracy (MOTA) increased from
85% to 92%. The place-dependent new-track and false-
alarm models even applied in isolation (blue and green
lines) gave a performance increase over the baseline MHT.

The insights into these improvements are as follows. As
can be seen in Figure 1 right, few new-track events were
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Fig. 4. Four of 134 sample tracks from the laboratory data set (top left). Accuracy of the different tracking approaches (MOTA, top
right), total number of mismatches, misses and false positives as a function of NHyp (bottom, from left to right). The solid red lines show
the results of the baseline MHT with fixed Poisson rates for new tracks and false alarms. The green and blue lines are for the extended
approach using the spatial priors for new tracks and false alarms, respectively. The results for the combined approach are denoted by
the magenta lines. The tracker cycle times are the lower, dotted lines in the top right diagram. The graphs show that when replacing the
fixed Poisson rates by the learned, place-dependent ones, the tracker makes significantly fewer errors at slightly faster cycle times.

observed in the center of the room. If, for instance, a track
occlusion occurs at such a place (e.g. from another person),
hypotheses that interpret this as an obsolete track followed
by a new track receive a much smaller probability through
the spatial affordance map than hypotheses that assume
this to be an occlusion. The improvement in the false-
positive error is explained by fewer incorrect track creations
in regions of clutter. This is due to both lower new-track
probabilities at such places and higher false-alarm rates in

regions of clutter. The combined approach benefits from
both aspects and further reduces this type of error. Fewer
misses are due to earlier track creations. The modes in the
new-track distribution, especially around doors, allow the
system to initialize tracks faster than with a fixed rate. Short
sequences of observations are also tracked more accurately
causing fewer errors of this type.

An additional data set with 15 people was collected to
investigate whether the model is overfitted and generalizes
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Fig. 5. From the experiment in an underground hall of Freiburg’s main station, 12 of 160 sample tracks (top left). Accuracy of the
different tracking approaches (MOTA, top right) and total number of mismatches, misses and false positives as a function of NHyp

(bottom, from left to right). The red line shows the baseline MHT with fixed Poisson rates, the green and blue lines are for the system
extended by the new-track and false-alarm models, the magenta line gives the combined approach. As in the indoor experiment, the
diagrams show that the combined approach significantly reduces the number of mismatches, false positives and misses.

poorly when people behave in an unusual way. In this exper-
iment, subjects entered the sensor’s field of view through
entry points that were not used previously (in between the
couch and the desk at the bottom in Figure 1) or appeared
in the center of the room by jumping off tables. Manual
inspection of the resulting trees (using the graphviz-lib for
visualization) revealed that the 15 people were tracked cor-
rectly. The difference with the approach for fixed Poisson
rates is that, after track creation, the best hypothesis is not
the true one during the first few (less than five) iterations.

However, the incorrect hypotheses that successively postu-
late that the subjects are false alarms become very unlikely,
causing the algorithm to backtrack to the true hypothesis
within milliseconds.

To demonstrate the scalability of our extensions, we eval-
uated them in two unscripted large-scale outdoor settings.
The first data set was collected in an underground hall in
Freiburg’s main station and the second one in a pedes-
trian zone in the city center of Freiburg during a regular
workday. The data sets consist of 33,204 frames during
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Fig. 6. From the experiment in the city center of Freiburg, 10 of 168 sample tracks (top left). Accuracy of the different tracking
approaches (MOTA, top right) and total number of mismatches, misses and false positives as a function of NHyp (bottom, from
left to right). The red, green, blue and magenta lines denote the baseline, the place-dependent false-alarm and new-track models
and the combined approach, respectively. Again, the diagrams show that the place-dependent models significantly improve tracking
performance.

15 minutes and 55,475 frames during 25 minutes, respec-
tively. To determine the data association ground truth, 6,000
frames with 160 persons and 10,000 frames with 168
persons were again labeled by hand. The data sets con-
tain up to 19 simultaneously visible targets with very fre-
quent occlusions from other individuals or obstacles in the
environment.

The results of the first outdoor experiment at Freiburg’s
main station show that the extended MHT with spatial pri-
ors yields similar improvements to the indoor data set (see

Figure 5). At NHyp = 500, the accuracy (MOTA) increased
from 85% to 91%. A detailed analysis of the CLEAR MOT
metric shows that the number of mismatches dropped from
286 to 179, the number of false positives from 2,758 to
1,483 and the number of misses decreased from 1,742 to
1,447, respectively.

The results of the city center data set are shown in Fig-
ure 6. They demonstrate an even larger improvement. At
NHyp = 500, the accuracy (MOTA) increased by 12% (71%
vs. 83%). Since the environment contains many regions of
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Fig. 7. Four frames of the outdoor experiment carried out in the city center of Freiburg. The images from left to right show the tracking
results at time steps t = 335, 353, 365 and 381. Laser range measurements are shown as small green dots (background) and small red
dots (detected pedestrians). The traces of the observed pedestrians are drawn with colored ellipses.

clutter, the number of false positives decreased substantially
(7,106 vs. 3,922). The number of mismatches also dropped
from 197 to 125 while the number of misses decreased from
1,992 to 1,552. The ‘background learning ability’ of the
false-alarm layer in the spatial affordance map was particu-
larly appropriate in this data set as the environment contains
several person-shaped objects (trees, chairs, trash bins) that
led to many false positives from the detector. The fixed-
rate approach was not able to cope well with these detection
errors and incorrectly created tracks at these locations.

In the diagrams of the three experiments, it can be
seen that the number of misses decreased and the num-
ber of false positives increased over NHyp. This behavior
is explained by the fact that false alarms are more likely
than new tracks. Hypotheses that postulate observations as
false alarms receive higher probabilities and can dominate
the hypothesis ranking. This can lead to the rejection of
lower probability hypotheses at small values for NHyp, that
should have been interpreted as observations of new tracks.
With increasing NHyp more new-track hypotheses survive
the pruning process and the number of misses decreases.

The noise in the error plots, such as the number of mis-
matches, for instance, means that more hypotheses do not
always lead to a smaller error, which is counterintuitive.
This is due to the pruning strategies in combination with
numerical issues in MHT. It follows from the combinatorics
of the approach that several hypotheses can have the same
probability. If NHyp happens to prune within such a plateau
in the distribution, the outcome of the tracker can become
somewhat unpredictable since it depends on the order in
which these hypotheses are stored in memory.

In addition to the improvement in tracking performance,
the extended tracker is also slightly more efficient. As the
new approach makes fewer track-creation errors, it has to
maintain fewer tracks on average, especially in regions of
clutter. The implementation of our system runs at the sensor
frame rate of 12 Hz on a single core of a 2.8 GHz PC with
up to 300 hypotheses. With 500 hypotheses, the tracker still
runs with 6 Hz.

5.2. Place-dependent motion model

In this section we evaluate the place-dependent motion
model from Section 4. A data set was collected in an office

Fig. 8. From experiment 2, 6 (of 50) sample tracks.

environment and divided into a training set and a test set.
The training set contains 7,443 frames with 50 person tracks
and was used to learn the spatial affordance map (see Fig-
ure 8). To learn the walkable-area map, we counted the track
confirmation events of the best hypothesis. The test set with
6,971 frames and 28 people tracks was used to compare
the model with a constant-velocity motion model under
different conditions. The data set was labeled by hand to
determine both the ground truth ( x, y)-positions of subjects
and the true data associations.

To analyze the robustness and accuracy of the new pre-
diction model, we defined, in a first experiment, areas in
which target measurements are ignored as if subjects had
been occluded by an object or another person. These areas
occur at hallway corners and U-turns where people typically
maneuver. As the occlusions are only simulated, the ground
truth position of the targets are still available. See Figure 3
for sample frames.

For the 28 manually inspected tracks of the test set, the
constant-velocity motion model lost a track 12 times while
the new model had only a single track loss. Clearly, as a
naive countermeasure, one could enlarge the process noise
covariance of the constant-velocity motion model to avoid
such losses. But in the multi-target case considered here,
this leads to enlarged validation gates and increased levels
of data association ambiguity. Consequently, the probabil-
ity distribution over pruned hypothesis trees will be less
accurate and lead to a less efficient tracker.
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Fig. 9. Estimation error in x of the constant-velocity motion model (cvmm, left) and the place-dependent motion model (right). Peaks
correspond to occluded target maneuvers. See also Figure 3, center, which shows the right turn of a person in this experiment. While both
approaches are largely consistent from an estimation point of view, the place-dependent model results in an overall smaller estimation
error and smaller uncertainties.

As a measure of metric accuracy, the resulting estimation
error in x is shown in Figure 9 (the errors in y are similar).

The diagram shows smaller estimation errors and 2σ
bounds for the place-dependent motion model during most
target maneuvers. The predicted covariances do not become
boundless during occlusion events (peaks in the error plots)
since the shape of the covariance predictions follows the
walkable-area map around the very position of the target.
Sample situations of this behavior are shown in Figure 3.

In a second experiment, we reduced the observation fre-
quency to 0.5 Hz and we allowed the tracker one second to
initialize its targets. The internal cycle time of the tracker
was left unchanged at 12 Hz. This setting simulates a very
slow data acquisition sensor or the realistic situation of an
embedded CPU where people detection runs concurrently
with many other processes at a low rate.

The constant-velocity motion model was not able to fol-
low the maneuvering targets and lost all of them as soon as
they passed the corner of the hallway. The place-dependent
motion model was able to predict the targets around corners
as seen in Figure 3 and lost only six of the 28 tracks.

6. Conclusions

In this paper we presented the spatial affordance map for
the purpose of extending a people tracker with spatial pri-
ors on human behavior. We approached the problem as a
parameter estimation problem of a non-homogeneous spa-
tial Poisson process. The model is learned using Bayesian
inference from observations of track-creation, confirma-
tion and false-alarm events. It enabled us to overcome the
usual fixed Poisson rate assumptions for new tracks and
false alarms and to learn a place-dependent model for these
events. Finally, we showed that the Poisson process can
be seamlessly integrated into the framework of an MHT
tracker.

In large-scale experiments in different indoor and out-
door settings, we demonstrated that the extended tracker is
significantly more accurate in terms of the CLEAR MOT

metric. In particular, the number of track identifier switches
was reduced from at least 36% up to several factors. This
error is the most relevant metric for a people tracker as it
quantifies the ability to keep correct identities over occlu-
sion events and missed detections. The number of false pos-
itives dropped by at least 45% while track misses decreased
by at least 17%.

The map also allowed us to derive a novel, place-
dependent model for predicting the paths of maneuvering
targets during lengthy occlusion events. The model is based
on a walkable-area map derived from the learned rate func-
tion of track-confirmation events and uses an auxiliary par-
ticle filter that probes the map at locations of a look-ahead
particle. In our experiments, the tracker could follow highly
mobile people at an observation frequency as low as 0.5 Hz,
clearly outperforming the constant-velocity motion model
in terms of track losses.

Notes

1. Note that for a non-separable rate function, the Poisson pro-
cess can model places whose importance changes over time.
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