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Abstract People typically move and act under the constraints of an envi-
ronment, making human behavior strongly place-dependent. Motion patterns,
the places and the rates at which people appear, disappear, walk or stand are
not random but engendered by the environment. In this paper, we learn a
non-homogeneous spatial Poisson process to spatially ground human activity
events for the purpose of people tracking. We show how this representation
can be used to compute refined probability distributions over hypotheses in
a multi-hypothesis tracker and to make better, place-dependent predictions
of human motion. In experiments with data from a laser range finder, we
demonstrate how both extensions lead to more accurate tracking behavior in
terms of data association errors and number of track losses. The system runs
in real-time on a typical desktop computer.

1 Introduction

As robots enter more domains in which they interact and cooperate closely
with humans, people tracking is becoming a key technology for areas such as
human-robot interaction, human activity understanding or intelligent cars. In
contrast to air- and waterborne targets, people typically move and act under
environmental constraints. These constraints vary over space and enable and
limit possible motions and action patterns (people cannot walk through walls,
cooking is constraint to places with a stove), making human behavior strongly
place-dependent.

In this paper we learn and represent human spatial behavior for the pur-
pose of people tracking. By learning a spatial model that represents activity
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events in a global reference frame and on large time scales, the robot acquires
place-dependent priors on human behavior. As we will demonstrate, such pri-
ors can be used to better hypothesize about the state of the world (that is,
the state of people in the world), and to make place-dependent predictions of
human motion that better reflect how people are using space. Concretely, we
propose a non-homogeneous spatial Poisson process to represent the spatially
varying distribution over relevant human activity events. This representation,
called spatial affordance map, holds space-dependent Poisson rates for the oc-
currence of track events such as creation, confirmation or false alarm. The
map is then incorporated into a multi-hypothesis tracking framework using
data from a laser range finder.

In most related work on laser-based people tracking [1, 2, 3, 4, 5, 6, 7],
a person is represented as a single state that encodes torso position and
velocities. People are extracted from range data as single blobs or found by
merging nearby point clusters that correspond to legs. People tracking has
also been addressed as a leg tracking problem [8, 9, 10] where people are
represented by the states of two legs, either in a single augmented state [9] or
as a high-level track to which two low-level leg tracks are associated [8, 10].

Different tracking and data association approaches have been used for
laser-based people tracking. The nearest neighbor filter and variations thereof
are typically employed in earlier works [1, 2, 3]. A sample-based joint prob-
abilistic data association filter (JPDAF) has been presented in Schulz et al.
[4] and adopted by Topp et al. [5]. The Multi-hypothesis tracking (MHT) ap-
proach according to Reid [11] and Cox et al. [12] has been used in [8, 7, 10].
What makes the MHT an attractive choice is that it belongs to the most
general data association techniques. The method generates joint compati-
ble assignments, integrates them over time, and is able to deal with track
creation, confirmation, occlusion, and deletion events in a probabilistically
consistent way. Other multi-target data association techniques such as the
global nearest neighbor filter, the track splitting filter or the JPDAF are
suboptimal in nature as they simplify the problem in one or the other way
[13, 14]. For these reasons, the MHT has become a widely accepted tool in
the target tracking community [14].

For people tracking, however, the MHT approach relies on statistical as-
sumptions that are overly simplified and do not account for place-dependent
target behavior. It assumes new tracks and false alarms being uniformly dis-
tributed in the sensor field of view with fixed Poisson rates. While this might
be acceptable in settings for which the approach has been originally devel-
oped (using, e.g., radar or underwater sonar), it does not account for the
non-random usage of an environment by people. Human subjects appear, dis-
appear, walk or stand at specific locations. False alarms are also more likely
to arise in areas with cluttered backgrounds rather than in open spaces. In
this paper, we extend prior work by incorporating learned distributions over
track interpretation events in order to support data association and show how
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a non-homogeneous spatial Poisson process can be used to seamlessly extend
the MHT approach for this purpose.

For motion prediction of people, most researchers employ the Brownian
motion model and the constant velocity motion model. The former makes
no assumptions about the target dynamics, the latter assumes linear target
motion. Better motion models for people tracking have been proposed by
Bruce and Gordon [15] and Liao et al. [16].

In [15], the robot learns goal locations in an environment from people
trajectories obtained by a laser-based tracker. Goals are found as end points
of clustered trajectories. Human motion is then predicted along paths that
a planner generates from the location of people being tracked to the goal
locations. The performance of the tracker was improved in comparison to a
Brownian motion model. Liao et al. [16] extract a Voronoi graph from a map
of the environment and represent the state of people being on edges of that
graph. This allows them to predict motion of people along the edges that
follow the topological shape of the environment.

With maneuvering targets, a single model can be insufficient to represent
the target’s motion. Multiple model based approaches in which different mod-
els run in parallel and describe different aspects of the target behavior are
a widely accepted technique to deal with maneuvering targets, in particular
the Interacting Multiple Model (IMM) algorithm [17]. Different target motion
models are also studied by Kwok and Fox [18]. The approach is based on a
Rao-Blackwellized particle filter to model the potential interactions between
a target and its environment. The authors define a discrete set of different
target motion models from which the filter draws samples. Then, conditioned
on the model, the target is tracked using Kalman filters.

Regarding motion models, our approach extends prior work in two as-
pects: learning and place-dependency. Opposed to [16, 18] and IMM related
methods, we do not rely on predefined motion models but apply learning for
this task in order to acquire place-dependent models. In [16], the positions of
people is projected onto a Voronoi graph which is a topologically correct but
metrically poor model for human motion. While sufficient for the purpose
of their work, there is no insight why people should move on a Voronoi set,
particularly in open spaces whose topology is not well defined. Our approach,
by contrast, tracks the actual position of people and predicts their motion
according to metric, place-dependent models. Opposed to [15] where motion
prediction is done along paths that a planner plans to a set of goal locations,
our learning approach predicts motion along the trajectories that people are
actually following.

The paper is structured as follows: the next section gives a brief overview of
the people tracker that will later be extended. Section 3 introduces the theory
of the spatial affordance map and expressions for learning its parameters.
Section 4 describes how the spatial affordance map can be used to compute
refined probability distributions over hypotheses, while section 5 contains
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the theory for the place-dependent motion model. Section 6 presents the
experimental results followed by the conclusions in section 7.

2 Multi-Hypothesis Tracking of People

For people tracking, we pursue a Multi-Hypothesis Tracking (MHT) approach
described in Arras et al. [10] based on the original MHT by Reid [11] and Cox
and Hingorani [12]. As we will use the tracker to learn the spatial affordance
map described hereafter, we give a short outline. Sections 4 and 5, where the
approach will be extended, contains the technical details.

The MHT algorithm, in summary, hypothesizes about the state of the
world by considering all statistically feasible assignments between measure-
ments and tracks and all possible interpretations of measurements as false
alarms or new track and tracks as matched, occluded or obsolete. A hypoth-
esis Ω t

i is one possible set of assignments and interpretations at time t.
For learning the spatial affordance map, the hypothesis with maximal

probability Ω t
best at time t is chosen to produce the track events that sub-

sequently serve as observations for the map. In case of a sensor mounted on a
mobile platform, we assume the existence of a metric map of the environment
and the ability of the robot to self-localize. Observations are then transformed
from local robot-centric coordinates into the world reference frame of the map.

3 Spatial Affordance Map

We pose the problem of learning a spatial model of human behavior as a
parameter estimation problem of a non-homogeneous spatial Poisson process.
The resulting model, called spatial affordance map, is a global long-term
representation of human activity events in the environment. The name lends
itself to the concept of affordances as we consider the possible sets of human
actions and motions as a result from environmental constraints. An affordance
is a resource or support that an object (the environment) offers an (human)
agent for action. This section describes the theory and how learning in the
spatial affordance map is implemented.

A Poisson distribution is a discrete distribution to compute the probability
of a certain number of events given an expected average number of events
over time or space. The parameter of the distribution is the positive real
number λ , the rate at which events occur per time or volume units. As we
are interesting in modeling events that occur randomly in time, the Poisson
distribution is a natural choice.

Based on the assumption that events in time occur independently of one
another, a Poisson process can deal with distributions of time intervals be-
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tween events. Concretely, let N(t) be a discrete random variable to represent
the number of events occurring up to time t with rate λ . Then we have that
N(t) follows a Poisson distribution with parameter λ t

P(N(t) = k) =
e−λ t(λ t)k

k!
k = 0,1, . . . (1)

In general, the rate parameter may change over time. In this case, the gen-
eralized rate function is given as λ (t) and the expected number of events
between time a and b is

λa,b =
∫ b

a
λ (t)dt. (2)

A homogeneous Poisson process is a special case of a non-homogeneous pro-
cess with constant rate λ (t) = λ .

The spatial Poisson process introduces a spatial dependency on the rate
function given as λ (x, t) with x ∈ X where X is a vector space such as R2 or
R3. For any subset S ⊂ X of finite extent (e.g. a spatial region), the number
of events occurring inside this region can be modeled as a Poisson process
with associated rate function λS(t) such that

λS(t) =
∫

S
λ (x, t)dx. (3)

In the case that this generalized rate function is a separable function of time
and space, we have:

λ (x, t) = f (x)λ (t) (4)

for some function f (x) for which we can demand∫
X

f (x)dx = 1 (5)

without loss of generality. This particular decomposition allows us to decouple
the occurrence of events between time and space. Given Eq. 5, λ (t) defines
the occurrence rate of events, while f (x) can be interpreted as a probability
distribution on where the event occurs in space.

Learning the spatio-temporal distribution of events in an environment is
equivalent to learn the generalized rate function λ (x, t). However, learning
the full continuous function is a highly expensive process. For this reason,
we approximate the non-homogeneous spatial Poisson process with a piece-
wise homogeneous one. The approximation is performed by discretizing the
environment into a bidimensional grid, where each cell represents a local ho-
mogeneous Poisson process with a fixed rate over time,

Pi j(k) =
e−λi j(λi j)k

k!
k = 0,1, . . . (6)
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where λi j is assumed to be constant over time. Finally, the spatial affordance
map is the generalized rate function λ (x, t) using a grid approximation,

λ (x, t)' ∑
(i, j)∈X

λi j1i j(x) (7)

with 1i j(x) being the indicator function defined as 1i j(x) = 1 if x ∈ celli j and
1i j(x) = 0 if x /∈ celli j. The type of approximation is not imperative and goes
without loss of generality. Other space tessellation techniques such as graphs,
quadtrees or arbitrary regions of homogeneous Poisson rates can equally be
used. Subdivision of space into regions of fixed Poisson rates has the property
that the preferable decomposition in Eq. 4 holds.

Each type of human activity event can be used to learn its own probability
distribution in the map. We can therefore think of the map as a representation
with multiple layers, one for every type of event. For the purpose of this
paper, the map has three layers, one for new tracks, for matched tracks and
for false alarms. The first layer represents the distribution and rates of people
appearing in the environment. The second layer can be considered a space
usage probability and contains a walkable area map of the environment. The
false alarm layer represents the place-dependent reliability of the detector.

3.1 Learning

In this section we show how to learn the parameter of a single cell in our grid
from a sequence K1..n of n observations ki ∈ {0,1}. We use Bayesian inference
for parameter learning, since the Bayesian approach can provide information
on cells via a prior distribution. We model the parameter λ using a Gamma
distribution, as it is the conjugate prior of the Poisson distribution. Let λ be
distributed according to the Gamma density, λ ∼Gamma(α,β ), parametrized
by the two parameters α and β ,

Gamma(λ ;α,β ) =
β α

Γ (α)
λ

α−1e−β λ for λ > 0. (8)

Then, learning the rate parameter λ consists in estimating the parameters
of a Gamma distribution. At discrete time index i, the posterior probability
of λi according to Bayes’ rule is computed as P(λi|K1..i) ∼ P(ki|λi−1)P(λi−1)
with P(λi−1) = Gamma(αi−1,βi−1) being the prior and P(ki|λi−1) = P(ki) from
Eq. 6 the likelihood. Then by substitution, it can be shown that the update
rules for the parameters are αi = αi−1 + ki and βi = βi−1 + 1. The posterior
mean of the rate parameter in a single cell is finally obtained as the expected
value of the Gamma,
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λ̂Bayesian = E[λ ] =
α

β
=

#positive events+1
#observations+1

. (9)

For i = 0 the quasi uniform Gamma prior for α = 1, β = 1 is taken. The
advantages of the Bayesian estimator are that it provides a variance estimate
which is a measure of confidence of the mean and that it allows to properly
initialize never observed cells.

Given the learned rates we can estimate the space distribution of the vari-
ous events. This distribution is obtained from the rate function of our spatial
affordance map λ (x, t). While this estimation is hard in the general setting
of a non-homogeneous spatial Poisson process, it becomes easy to compute
if the separability property of Eq. 4 holds1. In this case, the pdf, f (x), is
obtained by

f (x) =
λ (x, t)
λ (t)

(10)

where λ (x, t) is the spatial affordance map. The nominator, λ (t), can be
obtained from the map by substituting the expression for f (x) into the con-
straint defined in Eq. 5. Hence,

λ (t) =
∫

X
λ (x, t)dx. (11)

In our grid, those quantities are computed as

f (x) =
∑(i, j)∈X λi j1i j(x)

∑(i, j)∈X λi j
. (12)

In case of several layers in the map, each layer contains the distribution
f (x) of the respective type of events. Note that learning in the spatial af-
fordance map is simply realized by counting in a grid. This makes life-long
learning particularly straightforward as new information can be added at any
time by one or multiple robots.

Figure 1 shows two layers of the spatial affordance map of our laboratory,
learned during a first experiment. The picture on the left shows the space
usage distribution of the environment. The modes in this distribution corre-
spond to often used places and have the meaning of goal locations in that
room (three desks and a sofa). On the right, the distribution of new tracks
is depicted whose peaks denote locations where people appear (doors). The
reason for the small peaks at other locations than the doors is that when
subjects use an object (sit on a chair, lie on the sofa), they cause a track loss.
When they reenter space, they are detected again as new tracks.

1 Note that for a non-separable rate function, the Poisson process can model places
whose importance changes over time.
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Fig. 1 Spatial affordance map of the laboratory in experiment 1. The probability
distribution of matched track events is shown on the left, the distribution of new track
events is shown on the right. The marked locations in each distribution (extracted
with a peak finder and visualized by contours of equal probability) have different
meanings. While on the left they correspond to places that are often used by people
(three desks and a sofa), the maxima of the new track distribution (right) denote
locations where people appear (two doors, the couch and a desk).

4 MHT Data Association With Spatial Target Priors

The MHT assumes a Poisson distribution for the occurrences of new tracks
and false alarms over time and an uniform probability of these events over
space within the sensor field of view V . While this is a valid assumption for a
radar aimed upwards into the sky, it does not account for the place-dependent
character of human spatial behavior: people typically appear, disappear, walk
and stand at specific locations that correspond, for instance, to doors, eleva-
tors, entrances, or convex corners.

It is exactly this information that the spatial affordance map holds. We
can therefore seamlessly extend the MHT approach with the learned Poisson
rates for the arrival events of people and learned location statistics for new
tracks and false alarms.

At time t, each possible set of assignments and interpretations forms a
hypothesis Ω t

i . Let Z(t) = {zi(t)}mt
i=1 be the set of mt measurements which in

our case is the set of detected people in the laser data. For detection, we
use a learned classifier based on a collection of boosted features [19]. Let
further ψi(t) denote a set of assignments which associates predicted tracks
to measurements in Z(t) and let Zt be the set of all measurements up to
time t. Starting from a hypothesis of the previous time step, called a parent
hypothesis Ω

t−1
p(i) , and a new set Z(t), there are many possible assignment sets

ψ(t), each giving birth to a child hypothesis that branches off the parent.
This makes up an exponentially growing hypothesis tree. For a real-time
implementation, the growing tree needs to be pruned. To guide the pruning,
each hypothesis receives a probability, recursively calculated as the product
of a normalizer η , a measurement likelihood, an assignment set probability
and the parent hypothesis probability [11],
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p(Ω t
l | Zt) = η · p(Z(t) | ψi(t),Ω t−1

p(i)) (13)

p(ψi(t) |Ω
t−1
p(i) ,Z

t−1) · p(Ω t−1
p(i) | Zt−1).

While the last term is known from the previous iteration, the two expressions
that will be affected by our extension are the measurement likelihood and
the assignment set probability.

For the measurement likelihood, we assume that a measurement zi(t)
associated to a track x j has a Gaussian pdf centered on the measure-
ment prediction ẑ j(t) with innovation covariance matrix Si j(t), N (zi(t)) :=
N (zi(t) ; ẑ j(t),Si j(t)). The regular MHT now assumes that the pdf of a mea-
surement belonging to a new track or false alarm is uniform in V , the sensor
field of view, with probability V−1. Thus

p(Z(t) | ψi(t),Ω t−1
p(i)) = V−(NF +NN) ·

mt

∏
i=1

N (zi(t))δi (14)

with NF and NN being the number of measurements labeled as false alarms
and new tracks respectively. δi is an indicator variable being 1 if measurement
i has been associated to a track, and 0 otherwise.

Given the spatial affordance map, the term changes as follows. The prob-
ability of new tracks V−1 can now be replaced by

pN(x) =
λN(x, t)
λN(t)

=
λN(x, t)∫

V λN(x, t)dx
(15)

where λN(x, t) is the learned Poisson rate of new tracks in the map and x the
position of measurement z′i(t) transformed into global coordinates. The same
derivation applies for false alarms. Given our grid, Eq. 15 becomes

pN(x) =
λN(z′i(t), t)

∑(i, j)∈V λi j,N
. (16)

The probability of false alarms pF(x) is calculated in the same way using the
learned Poisson rate of false alarms λF(x, t) in the map.

The original expression for the assignment set probability can be shown
to be [10]

p(ψi(t) |Ω
t−1
p(i) ,Z

t−1) = η
′ · pNM

M · pNO
O · pND

D (17)

λ
NN
N ·λ NF

F ·V (NF +NN)

where NM, NO, and ND are the number of matched, occluded and deleted
tracks, respectively. The parameters pM, pO, and pD denote the probability
of matching, occlusion and deletion that are subject to pM + pO + pD = 1.
The regular MHT now assumes that the number of new tracks NN and false
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alarms NF both follow a fixed rate Poisson distribution with expected number
of occurrences λNV and λFV in the observation volume V .

Given the spatial affordance map, they can be replaced by rates from the
learned spatial Poisson process with rate functions λN(t) and λF(t) respec-
tively.

Substituting the modified terms back into Eq. 13 makes, like in the orig-
inal approach, that many terms cancel out leading to an easy-to-implement
expression for a hypothesis probability

p(Ω t
l | Zt) = η

′′ · pNM
M · pNO

O · pND
D ·

mt

∏
i=1

[N (zi(t))δi (18)

λN(z′i(t), t)
κi ·λF(z′i(t), t)

φi ] · p(Ω t−1
p(i) | Zt−1)

with δi and κi being indicator variables whether a track is matched to a mea-
surement or new, respectively, and φi indicating if a measurement is declared
to be a false alarm.

The insight of this extension of the MHT is that we replace fixed parame-
ters by learned distributions. This kind of domain knowledge helps the tracker
to better interpret measurements and tracks, leading to refined probability
distributions over hypotheses at the same run-time costs.

5 Place-Dependent Motion Models

Tracking algorithms rely on the predict-update cycle, where a motion model
predicts the future target position which is then validated by an observation
in the update phase. Without validation, caused, for instance, by the target
being hidden during an occlusion event, the state evolves blindly following
only the prediction model. Good motion models are especially important for
people tracking as people typically undergo lengthy occlusion events during
interaction with each other or with the environment.

As motion of people is hard to predict, having a precise model is difficult.
People can abruptly stop, turn back, left or right, make a step sideways or
accelerate suddenly. However, motion of people is not random but follows
place-dependent patterns. They, for instance, turn around convex corners,
avoid static obstacles, stop in front of doors and do not go through walls.
Clearly, the Brownian, the constant velocity and even higher-order motion
models are unable to capture the complexity of these movements.

For this reason, we extend the constant velocity motion assumption with
a place-dependent model derived from the learned space usage distribution
in the spatial affordance map. Let xt = ( xt yt ẋt ẏt )T be the state of a track
at time t and Σt its covariance estimate. The motion model p(xt |xt−1) is then
defined as
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p(xt |xt−1) = N (xt ;F xt−1,F Σt−1 FT +Q) (19)

with F being the state transition matrix. The entries in Q represent the accel-
eration capability of a human. We extend this model by considering how the
distribution of the state at a generic time t is influenced by the previous state
and the map. This distribution is approximated by the following factorization

p(xt |xt−1,m) ' p(xt |xt−1) · p(xt |m) (20)

where m is the spatial affordance map and p(xt |m) = f (x) denotes the space
usage probability of the portion of the environment occupied by xt , as defined
by Eq. 12.

A closed form estimation of this distribution does not exist since the map
contains a general density, poorly described by a parametric distribution. We
therefore follow a sampling approach and use a particle filter to address this
estimation problem. The particle filter is a sequential Monte Carlo technique
based on the importance sampling principle. In practice, it represents a target
distribution in form of a set of weighted samples

p(xt |xt−1,m)'∑
i

w(i)
δ

x(i)
t

(xt). (21)

where δ
x(i)

t
(xt) is the impulse function centered in x(i)

t . Sampling directly from
that distribution is not possible so the algorithm first computes samples from
a so called proposal distribution, π. The algorithm, then, computes the impor-
tance weight related to the i-th sample that takes into account the mismatch
among the target distribution τ and the proposal distribution w = τ

π
. The

weights are then normalized such that ∑w = 1.
In our case, we take the constant velocity model to derive the proposal π.

The importance weights are then represented by the space usage probability

w(i) =
p(xt |xt−1,m)

p(x(i)
t |xt−1)

= p(x(i)
t |m). (22)

The new motion model has now the form of a weighted sample set. Since we
are using Kalman filters for tracking, the first two moments of this distribu-
tion is estimated by

µ̂ = ∑
i

w(i)x(i)
t (23)

Σ̂ = ∑
i

w(i)(µ̂− x(i)
t )(µ̂− x(i)

t )T . (24)

The target is then predicted using µ̂ as the state prediction with associated
covariance Σ̂ . Obviously, the last step is not needed when using particle filters
for tracking.
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Fig. 2 Four of 135 example tracks from experiment 1 (left). The total number of data
association errors as a function of NHyp, the maximum number of hypotheses for the
MHT algorithm to maintain (right). The solid red line shows the regular MHT tracker,
the dotted green line the extended approach. The graph shows that by replacing the
fixed Poisson rates by the learned, place-dependent ones, the tracker requires fewer
hypothesis to reach the same level of accuracy and, given more hypotheses, makes
around 30% fewer data association errors.

An example situation that exemplifies how this motion model works is
shown in Figure 3. A person that takes a left turn in a hallway is tracked
over a lengthy occlusion event. The constant velocity motion model (dashed
ellipse) predicts the target into a wall and outside the walkable area of the
environment. The place-dependent model (solid ellipse) is able to follow the
left turn with a state covariance shaped like the hallway. In other words, the
model predicts the target “around the corner”. The tracker with the constant
velocity motion loses track as the reappearing person is outside the validation
gate (shown as 95% ellipses).

6 Experiments

For the experiments we collected two data sets, one in a laboratory (experi-
ment 1, Figure 2) and one in an office building (experiment 2, Figure 3). As
sensors we used a fixed Sick laser scanner with an angular resolution of 0.5
degree.

The spatial affordance maps were trained based on the tracker described
in [10], the grid cells were chosen to be 30 cm in size. The parameters of
the tracker have been learned from a training data set with 95 tracks over
28242 frames. All data associations including occlusions have been hand-
labeled. This led to a matching probability pM = 0.59, an occlusion probability
pO = 0.40, a deletion probability pD = 0.01, a fixed Poisson rate for new tracks
λN = 0.0102 and a fixed Poisson rate for false alarms as λF = 0.00008. The
rates have been estimated using the Bayesian approach in Eq. 9.

The implementation of our system runs in real-time on a 2.8 GHz quad-
core CPU. The cycle time of a typical setting with NHyp = 50, 500 samples
for the particle filter, and up to eight parallel tracks is around 12 Hz when
sensor data are immediately available.
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6.1 MHT Data Association With Spatial Target Priors

The original MHT is compared to the approach using the spatial affordance
map on the data set from the laboratory over 38994 frames and with a total
number of 135 people entering and leaving the sensor field of view. The ground
truth has been determined by manual inspection. For the comparison we
count the total number of data association errors that are created by the
best hypotheses of the two tracking methods. The data association error is
defined to be the number of identifier switches over the life cycle of a ground
truth track. We use a pruning strategy which limits the maximum number
of hypotheses at every step to NHyp (the multi-parent variant of the pruning
algorithm proposed by Murty [20]). In order to show the evolution of the
error as a function of NHyp, the computational effort, NHyp is varied from 1
to 50.

The result shows a significant improvement of the extended MHT over the
regular approach (see Figure 2). The explanation is given by an example.
As can be seen in Figure 1 right, few new track events have been observed
in the center of the room. If at such a place a track occlusion occurs (e.g.
from another person), hypotheses that interpret this as an obsolete track
followed by a new track receive a much smaller probability through the spatial
affordance map than hypotheses that assume this to be an occlusion.

A data set with 15 people was collected to investigate whether the model
is overfitted and generalizes poorly for unusual behavior of people. Subjects
entered the sensor field of view through entry points that have never been
used (in between the couch and the desk at the bottom in Fig 1) or appeared
in the center of the room (by jumping off from tables). Manual inspection
of the resulting trees (using the graphviz-lib for visualization) revealed that
all 15 people are tracked correctly. The difference to the approach with fixed
Poisson rates is that, after track creation, the best hypothesis is not the true
one during the first few (less than five) iterations. However, the incorrect hy-
potheses that successively postulate the subjects being a false alarm become
very unlikely, causing the algorithm to backtrack to the true hypothesis.

6.2 Place-Dependent Motion Model

In the second experiment, the constant velocity motion model is compared
to our place-dependent motion model. A training set over 7443 frames with
50 person tracks in a office-like environment was recorded to learn the spatial
affordance map (see Figure 3). A test set with 6971 frames and 28 people
tracks was used to compare the two models. The data set was labeled by
hand to determine both, the ground truth positions of people and the true
data associations. In order to make the task more difficult, we defined areas
in which target observations are ignored as if the person had been occluded
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Fig. 3 Six (of 50) example tracks from experiment 2. Trajectory of a person in
experiment 2 taking a left turn during an occlusion event. Predictions from a constant
velocity motion model (dashed ellipse) and the new model (solid ellipse) are shown.
The background grid (in blue) shows the learned space usage distribution of the
spatial affordance map. The small black dots are the weighted samples of the place-
dependent motion model. The model is able to predict the target “around the corner”
yielding much better motion predictions in this type of situations.

Fig. 4 Comparison between constant velocity motion model (cvmm, left) and place-
dependent motion model (right). Peaks correspond to occluded target maneuvers
(turns around corners and U-turns). Fig. 3 shows the left turn of a person at step 217
of this experiment. While both approaches are largely consistent from a estimation
point of view, the place-dependent model results in an overall smaller estimation error
and smaller uncertainties. For 28 manually inspected tracks, the constant velocity
motion model lost a track 15 times while the new model had only one track loss.

by an object or another person. These areas were placed at hallway corners
and U-turns where people typically maneuver. As the occlusion is simulated,
the ground truth position of the targets is still available. As a measure of
accuracy, the posterior position estimates of both approaches to the ground
truth is calculated. The resulting estimation error in x is shown in Figure 4
(the error in y is similar).

The diagram shows much smaller estimation errors and 2σ bounds for the
place-dependent motion model during target maneuvers. An important result
is that the predicted covariances do not grow boundless during the occlusion
events (peaks in the error plots). As illustrated in Figure 3, the shape of the
covariance predictions follows the walkable area map at the very place of the
target. Smaller covariances lead to lower levels of data association ambiguity,
and thus, to decreased computational costs and more accurate probability
distribution over pruned hypothesis trees.
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For 28 manually inspected tracks, the constant velocity motion model lost
a track 15 times while the new model had only a single track loss. As a naive
countermeasure, one could enlarge the entries of the process noise covariance
Q to make the constant velocity motion model avoid such losses, but this is
clearly the wrong way to go as it brings along an even higher level of data
association ambiguity.

7 Conclusions

In this paper we presented a people tracking approach that accounts for the
place-dependency of human behavior. We posed the problem of learning a
spatial model of human behavior as a parameter estimation problem of a non-
homogeneous spatial Poisson process. The model, called spatial affordance
map, is learned using Bayesian inference from observations of track creation,
matching and false alarm events, gained by introspection of a laser-based
multi-hypothesis people tracker.

The map enabled us to relax and overcome the simplistic fixed Poisson rate
assumption for new tracks and false alarms in the MHT approach. Using a
learned spatio-temporal Poisson rate function, the system was able to com-
pute refined probability distributions over hypotheses, resulting in a clearly
more accurate tracking behavior in terms of data association errors at the
same costs.

The map further allowed us to derive a new, place-dependent model to
predict target motion. The model showed superior performance in predicting
maneuvering targets especially during lengthy occlusion events when com-
pared to a constant velocity motion model.

Future work will consider model-driven hypothesis generation at places
where the spatial affordance map is highly multi-modal for target predictions
during very long occlusion events.
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