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Abstract— Nowadays, robots often operate in environments environment. Schulzt al. [16] proposed an approach that
that they share with humans. The ability to act similar to humans  js able to robustly track multiple people. To address the

is an important prerequisite for the social acceptance of robots. 4t association problem, they applied joint probabiligtita
In this paper, we consider the problem of navigation in populated iation filt . l,) i ith ticle filt
environments. We present a path planning algorithm that enables 2SSOcialion Titers in combination with a particie Tiiter.

robots to move efficiently and smoothly with groups of people ~ Given the knowledge about locations of people, the robot
by selecting those individuals that move towards the robot's can adapt its behavior and interact with the individuals. Fo

desired goal. Our technique is based on a people tracking systemexample, the museum tour guide RHINO [5] gave successful
in combination with an iterative A* planner. The approach i< in different museums. In case of crowded spaces it

iteratively finds both, a path and a partition of the set of -
surrounding people into obstacles and subjects to follow. In the needed to traverse, the authors used speech synthesisiesteq

absence of people, the optimal solution is still found by the A* people to let the robot path through. The tour guide robot
planner. The approach has been implemented and tested on a real Minerva [20] used a similar system while operating in the

mobile robot in populated environments. Experiments illustrate  Smithsonian museum of American history. During Expo.02,
that the robot is_able to move v_vith_groups of people resulting in the robots deployed by Siegwat al.[17] used a combination
a more human-like way of navigation among people. of global planning and local collision avoidance for naviga.
For the same exposition project, Jensen [9] distinguisiees b
. INTRODUCTION tween static, semi-static, and dynamic objects. This alltov
Whenever humans navigate in populated environments, th@yre robustly track the individual objects in the surrounggi
often move in groups. This walking strategy leads to fewgf the robot. Even so these three robots operated in highly
detours and avoids, for example, slightly slower walkingopulated environments, their path planning approaches di
people. It can be expected that the ability to adapt to movifgt adapt to the motion and estimated movements of observed
people improves the navigation capabilities of a robot angbople.
leads to a more human-like behavior. This is Opposed to mOSBennewitZ [3] proposed an approach to |earn typ|ca| motion
appl‘oaCheS to autonomous r0b0t na.Viga.tion tha.t Seek to fMterns of people and to adapt the motion planning ac(@rdin
the shortest trajectory to the desired goal or minimizesigie o the predicted motions. This allows for more accurate amoti
of collisions with static or dynamic obstacles. None of thegyrediction but requires to learn models of the individuabpe
approaches (see next section) aims to guide a robot throughi@ The learning of such patterns is performed by an EM style
crowded environments similar to the way humans do. algorithm [4]. In contrast to this, our approach operatethwi
This paper presents a novel approach to autonomous ngyt explicitely learned models. To integrate knowledgetabo
igation that allows a robot to move similar to humans. IBeople in the path p|anning process, Foka and Trahanias [7]
populated environments, our approach seeks to meNR presented an approach that uses a partially observableoMark
groups of people or individuals as long as they move towarggcision processes (POMDPs) for predicting the motion of
the robot’s goal. Our technique is based on a people trackiggople. In this way, their approach allows a mobile robot to
system in combination with an iterative A* planner. In casgjan trajectories that are less likely to interfere with pleo
the robot encounters an obstacle-free trajectory, the adsth The approach of Tadokoet al.[19] also applies probabilis-
guides the robot on the shortest possible trajectory. Otinmie  tic techniques to predict the motion of people based on eater
has been implemented and successfully tested on a real roBghsors. They apply a genetic algorithm for path planning
Applications include robots that work in museums, hossjtalthat seeks to minimize the length of the trajectory and the
public spaces, trade fairs as well as autonomous wheeschaifsk of collisions. Philippseret al. [13] uses an extension of
ICP that combines motion detection from a mobile platform

Il. RELATED WORK ; - T o .
h b deploved i lated . with position estimation. This information is used to esttm
Whenever robots are deployed in populate enV'ronmenés'craversability risk function that unifies dynamic and istat

the. ab'"t.y to perceive peOP'e and react according to th"adf)stacles. The planning system uses this risk function to
actions improves the service and robustness of a mob%

Enerate smooth paths that trade off collision risk versus
robot. In the past, several researcher addressed the prob tours
of detecting and tracking humans over time. Montemerlo an '

; Dealing with dynamic environments is also an important
Thrun [12] proposed the SLAP framework that smultaneous@s

ks th ‘ ! 4 locali h bot i ic for autonomous or semi-autonomous wheelchairs. The
tracks the poses of people and localizes the robot in t é')stem of Prasslest al. [14] perform short term motion pre-

All authors are members of the University of Freiburg, Deparntimef di_Ction of dY”,amiC Ot_)StadeS in ord?r FO ensure safe naoigat
Computer Science, D-79110 Freiburg, Germany without collisions using some heuristics.



All techniques presented so far estimated the location and laser scanner =  world model
motion of people in the environment. Based on this knowledge ‘ *

these approaches aim to plan short trajectories that nEgimi
the risk of collision. This results in avoiding regions @os

to people and prevents the robot from adapting its motion to people tracker A” planner
the dynamics or the humans. In contrast to this, our approach
presented in this paper seeks to adapt its motion to the way

humans move. Instead of driving as fast as possible on the

preferably shortest trajectory that is collision free, oolvot is people selection

able to move with groups of people and still follows a person *
even if it would be possible to overtake. We achieve this by an
iterative planning approach that seeks for people that appe people following /plan execution

to move to the same target location than the robot.
Fig. 1. The information flow of the individual components.
I1l. L ASER-BASED PEOPLE TRACKING

A prerequisite for a socially inspired approach to navigati
is the ability of the robot to reliably detect and track peoplExperiments show that the AdaBoost classifier is superiar to
in its surroundings. This section describes the Kalmanrfiltenanually designed classifier and is therefore also usedsn th
based multi-target tracker that is utilized to detect ardtkr Work.
people. We briefly go through the tracking cycle. For the Data associationFor data association, we employ a nearest
details of Kalman filtering and target tracking the reader Reighbor standard filter that considers tracks separatdly.
referred to [2]. though this is a very simplistic approach to data associatio

State prediction.A people track is represented as = the performance was sufficient for our purposes. Our current
(z,y,vs,v,) Wherez and y are the track position and, extension of this tracker integrates data associationsibers
and v, the z and y components of the track velocity. Thisover time using multiple hypotheses.
is done in the robot’s (odometry) frame of reference, which Estimation. Given that both, the state and measurement
is static for short term with respect to the peoples frame pfediction models are linear, a (non-extended) Kalmanrfilte
reference. With this state representation, new tracks ean as the optimal estimator under the Gaussian assumption can
properly initialized withv,, = v, = 0. For motion prediction, be employed.

a constant velocity model is employed. Finally the estimated positions of tracks and their velesit

Tracks are initially represented relative to the robot, iRave to be converted to the localization’s (planner’s) faoh
the sensor reference frame. As the planner operates in wdference taking into account the localization uncerjaint
coordinates, they are transformed into the world reference
frame using the robot’s pose estimate from the localization
system. All involved uncertainties are propagated usingsé fi
order approximation.

Measurement predictiorAs the z- and y-coordinates of a
track are directly observable, tiex 4 measurement matrix
H is formed by the2 x 2 identity matrix inxz andy and the
2 x 2 zero matrix inv, andv,. A. lterative Planning

Observation.In the observation step, people are detected To decide whether to follow a person and to find the best
in the laser range data. The problem can be seen agpeasson to follow, we are looking for people who seem to have
classification problem that consists in finding those lassimilar short-term goals than the robot itself. To detertime
beams that correspond to people and to discard other beapenple to follow, we iteratively plan a path and select peopl
Typically, hand designed classifiers have been employed #mcording to the previously planned path.
this task. A popular approach is to extract people by detgcti For modeling the environment, we use an occupancy grid
moving blobs that appear as local minima in the laser rangep which contains only static obstacles and can be obtained
scans. Neither the selection of features nor their threlshade with standard mapping techniques [8]. Additionally, we mai
learned or determined other than by manual design and hatain a temporary local map containing the observed (dynamic
tuning [10, 6, 15, 16, 21]. This motivates the application afbstacles based on the latestaser observationsn(= 20).

a supervised learning technique. In particular, our apgroaThe basic path planning is performed by the A* algorithm

applies AdaBoost to train a strong classifier from simplen the combination of the global (static) and local occuganc

features of groups of neighboring beams correspondingg® legrid map. Thus we plan in the 2-dimensional, y)-Space

in range data [1]. AdaBoost takes a labeled training set andoa reason of efficiency. As a fast computable heuristic we
(possibly large) vocabulary of features that may or may mot lise Dijkstra’s algorithm on the static map, which is once

appropriate for the given classification task. The methash thcomputed when the goal is set. This leads to fast re-planning
creates a classifier by selecting the most informative featu capabilities while we guarantee a directed search especial

and finding the optimal thresholds given the training datthrough complicated room- and corridor-combinations [18]

IV. PLANNING AND PEOPLESELECTION

This section explain how the detected people are incorpo-
rated into our planning approach. Figure 1 shows the infor-
mation flow between the individual modules. Our approach
iterates the A* planner and the people selection technique.



To avoid collisions caused by driving too close to obstacledlgorithm 1 Iterative path planning with people

we convolve the grid with a Gaussian kernel to give highglet 1, C P the set of people not considered as obstacles in

costs to cells close to obstacles. This allows the robot Q]Dkep|anning Step’ and fz CcCP the set of peop|e who are suitable
a reasonable distance to obstacles but at the same timeeenaglfollow based on the path planned in step

it to navigate through narrow passages.
Since we do not learn prediction of a person’s movemenigput: PeopleP = {P,..., P,}
like Foka and Trahanias [7] or Bennewitz [3], we predicPutput: Pathp and the set of people, who are suitable to
only the short-term movements of people into our navigation follow
system. Based on the estimated short-term movements, ouy =
planner needs to determine if a person is suitable to act ag, = P
a leader which refers to the fact that the robot follows this loop
person. The robot should sel_ect only those peo_ple asa p:dt_ent Plan pathp; with
Ie(_’:\der, who move _towar_ds its own g_oal location. To a_chle_ve Compute potential leader§ based on path;
this, we apply an |tere_at|ve A* planning approach, which is f; = h; then
descnbed_m_ _the foIIovymg. _ return (p;, f3)
In the initial planning step, we ignore all people and .4 if
consider only the static obstacles in the environment. Thus f; = h; for anyj < i then
the _A* pl_anner reports the best action of the robot given the return “no path found”
static objects. The robot then seeks for people that interfe 4 it
with the planned trajectory. In case there are no peoplesclos his1 = f
to the planned path, there is no need for the robot to adapt
its trajectory. As a result, in the absence of people, thetrob
generates the optimal trajectory to the target location.
However, in highly populated environments such as mu-

seums or trade fairs people are likely to interfere with the f le th bot i d 1o foll
planned path of the robot. In this case, it identifies whichl 9roup ot peopie the robot IS Supposed to Tollow, one can

person is suitable to become a leader. This is done based®9) ly a standard local navigation approach such as pdkentia

o : - . field, nearness diagram navigation [11], or dynamic window
the position and motion direction of the person with respeé? . . )
to the planned trajectory. In its world model, the robot theﬁpproach [5, 20] that guides the robot to a position which

marks the person as a potential leader or as an obstacl&® i{ylng slightly behind the person to foII.ow._We obtained
has to avoid during planning. Then the robot executes the &Qmparably good results using the potential field method for
algorithm depending on the modified world model, in whic at. .
the grid cells occupied by people, who are not considered ag\lote_ that it can happ_en that our approa_ch does not converge
obstacles, are marked as free. These steps are executed iR AT It ge.nerates an |qtermgd|ate solutpn‘that was afread
iterative fashion until the approach converges to an adbféss generatgd I a previous iteration smalier 1 if 7 refers to the
solution. Here, we call a path admissible if and only if it Wagurrent |terat|on: . - .

planned without considering exactly those people as olestac In the case in Wh'(.:h no adm|55|ble path is found, we
who are suitable to follow based on this path. ObviouslyheagOmIOUte the_path wh|c_h con5|d_ers aII_ people_ as obstacles
admissible path is a stable solution of our iterative plagni and report this as the final solution. This path is indeed not

approach. An algorithmic description of our work is dembteadmiSSible according to our definition, but it is collisiared
in Algorithm 1. and thus can be executed by the robot.
The decision if a person is a potential leader, the robot
considers the short-term prediction from the people track B. Blocking
combination with the latest trajectory computed by A*. In Another feature we added to our navigation approach is the
detail, we allow a maximum deviation from the plan by 1 nability to actively approach people who are standing around
to the right or left hand side as well as a maximum anguland thus blocking significant regions in the environmeng (se
deviation of 30deg. Figure 3 for an illustration). Those people often cause thet
Since our navigation system frequently re-plans its path accept detours to reach its goals (if there exists an dlesta
to adapt to the changes in the environments, the robot offifge path at all). In practical situations, however, peayten
follows people as long as they move in the same direction tharove away from narrow passages such as doorways as soon
the path guiding the robot to its target location. As as tesuas the robot approaches them. We address this issue by trying
the robot moves with people only as long as it is convenietd shoo away such people. We compute a path ignoring the
with respect to its own goal. person. If this path is significantly shorter than the orddjin
Figure 2 illustrates an example of our iterative planninglanned path, our system tries to shoo away the person and in
in which four people are in the vicinity of the robot andhis way free the path. To shoo someone away, we approach
are considered in the planning process. After four iteratio the person, accelerate shortly in front of them before Igaki
the approach converged to a solution and it is reported ag@ain. In most cases, this behavior causes people to uatyiti
result of our planning algorithm. After identifying the gen free the path.

i=i+1
end loop
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Fig. 2. Example of our iterative algorithm to plan a path andaeeople to
follow. Each odd row depicts the result of the A* planner aaghreeven row
the result of the person selection technique. Bold redesrahdicate people
classified as obstacles while green ones indicate potdesders.

Fig. 3. A person blocks a significantly shorter path causing@®ur for the
robot. Alternatively, the robot can try to shoo this perseray and to move
on the shorter path.

V. EXPERIMENTS

In this section, we present the experiments carried out to
evaluate our approach. We used simulated as well as real
world experiments carried out with an ActivMedia Robotics
Pioneer 2 robot in populated office environments. The robot
was equipped with a SICK LMS laser range finder to perceive
its surroundings. The experiments are designed to illtestra
how our robot follows people in its surroundings when the
environment is crowded.

In the first experiment, the robot moves through a corridor
that is empty in the beginning. While the robot is driving,
two people walked through as shown in Figure 4. The robot
reliably selects people who are suited as a leader and does no
consider them as obstacles as conventional approachesd woul
do. It chooses a person to follow as long as someone walks
along the corridor towards its goal.

In the second experiment, we test our approach with up
to six people walking in a corridor, entering and leaving
rooms, or just standing around. The robot is supposed te driv
to the other end of the corridor and to return. The people
acted naturally as they do in office buildings, railway stas,
hospitals, or museums. Figure 5 shows snapshots of this
experiment. As before, the robot always selects apprapriat
people to follow and does not plan trajectories around them
which would be a non-humanlike behavior.

The complexity of our planning system corresponds to the
one of A* multiplied by the number of iterations. Since the
robot can only observe people in its local surrounding, the
number of tracked people and therefore the number of itera-
tions is strictly limited. During the experiment, the plammn
operation required between two and eight iterations anil too
up to 250ms on a standard laptop computer. Even with a
high number of people in the surrounding of the robot, our
system reliably tracked the humans and made use of nearly
all possibilities to follow a person.

While testing our system with six subjects, we logged
the number of steps needed by our iterative path planning
algorithm. We removed all situations in which the robot was
able to plan a path directly without following a person. Eabl
summarizes the required planning steps. The majority jignn
operations needed exactly two steps. In around 5% of the
cases, our iterative planning approach could not find aisolut
This was the case when no plan existed or of the iterative
algorithm did not produce an admissible solution.

Additionally we tested to shoo away path blocking people



Fig. 4. The robot moved through the corridor and while movingogie
entered the corridor blocking its path. Green circles iatigpeople the robot
considered to follow and the green line shows its decisiarcl€s around
people indicate the uncertainty of the tracking filter. Aa t& seen, the robot
safely navigates through the corridor following people méeer it appears to
be appropriate.

in simulation. We modified our simulator to let a person '
randomly go away if the robot approaches her or not. Figure 6 {|
shows an example of both cases.

VI. CONCLUSIONS

In this paper, we presented a novel navigation approach: e I N |
that generates human-like motion behavior for mobile rebot
in highly populated environments. The approach detects and
tracks people in the surroundings of the robot and integrate g
this knowledge into the planning process. Compared toeelat |
work, we do not plan a path around people but try to identify |
and follow individuals or groups of people that appear to gl
move towards the same goal. This is achieved by an iterativej ’4 :
planning and person selection approach based on the A

algorithm that decides which subjects the robot should¥fall . ol By
1 ll = 'E’—“i"'
; ¢ e | S fﬂ

Our robot furthermore considers actions to shoo people away
that block narrow passages towards the desired goal or td avo -
significant detours. The approach has been implemented gfds  Experiments with multiple and differently moving pempThe robot
tested on a real robot in populated environments. The rokdtays selected people that move in the corrected directit¥at-is in unison
shows the ability to move with people in a similar way humart4th the robot's target location.




TABLE |
NUMBER OF REQUIRED ITERATION STEPS WHILE PLANNING PATHS
SURROUNDED BY UP TO6 PEOPLE

[ # iteration | frequency | relative frequency|
2 316 81.4%
3 39 10.1%
4 9 2.3%
5 4 1.0%
not terminated 20 5.2%

do. Such a technique is advantageous in highly populated
environments such as museums, trade fairs, hospitals dicpub
spaces.
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