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Abstract

In this paper we address the planning problem of a robot
searching for multiple residents in a retirement home
in order to remind them of an upcoming multi-person
recreational activity before a given deadline. We in-
troduce a novel Multi-User Schedule Based (M-USB)
Search approach which generates a high-level plan to
maximize the number of residents that are found within
the given time frame. From the schedules of the resi-
dents, the layout of the retirement home environment
as well as direct observations by the robot, we obtain
spatio-temporal likelihood functions for the individual
residents. The main contribution of our work is the de-
velopment of a novel approach to compute a reward
to find a search plan for the robot using: 1) the like-
lihood functions, 2) the availabilities of the residents,
and 3) the order in which the residents should be found.
Simulations were conducted on a floor of a real retire-
ment home to compare our proposed M-USB Search
approach to a Weighted Informed Walk and a Ran-
dom Walk. Our results show that the proposed M-USB
Search finds residents in a shorter amount of time by
visiting fewer rooms when compared to the other ap-
proaches.

1 Introduction
The health and quality of life of older adults living in long-
term care facilities can be improved by these individuals en-
gaging in stimulating recreational activities such as playing
games, playing musical instruments, doing crossword puz-
zles, or reading (Menec 2003). These types of activities can
delay age-related health decline (Bath and Deeg 2005) and
prevent social isolation (Findlay 2003), which could poten-
tially decrease the risk of dementia in elder adults (Wilson
et al. 2007). However, the lack of these activities in elder-
care facilities (PriceWaterCoopers LLP 2001) exists due to a
shortage of healthcare workers (Sharkey 2008), which could
be aggravated in the near future due to the rapid growth of
the elderly population (Centre for Health Workforce Stud-
ies 2006). Socially assistive robots have been shown to be
a promising technology to assist the elderly and to sup-
port caregivers in eldercare facilities (Oida et al. 2011;
McColl, Louie, and Nejat 2013).

This is an extended version of our paper in AAAI 2014

Our research focuses on the development of socially as-
sistive robots that can autonomously organize and facilitate
group-based recreational activities for the elderly. In this
paper, we address the planning problem of a robot search-
ing for multiple residents in a retirement home environment
in order to invite and remind them of an upcoming multi-
person recreational activity. The robot’s objective is to max-
imize the number of residents it finds in a given time frame
before the activity starts. During the search, the robot has to
consider that the residents have their own schedules which
contain appointments in different rooms of the environment,
during which the residents are not always available for in-
teraction with the robot. Based on these schedules, the robot
also considers the order in which the residents have to be
found to avoid searching for unavailable people. We intro-
duce a novel Multi-User Schedule Based (M-USB) Search
method which plans the robot’s search for a set of non-static
residents in a structured environment within a given time
frame based on the residents’ daily schedules.

Robotic search for people in structured environments has
been investigated in the literature for different scenarios.
For example, in (Elinas, Hoey, and Little 2003), the robot
HOMER was designed to deliver messages one at a time to
a particular person in a workspace environment. The robot
stored a likelihood function for each person’s location and
performed a best-first search. The search consisted of visit-
ing the nearest location to the robot based on the likelihood
function for a particular person. If the person was not found,
the robot iteratively visited other rooms until either the per-
son was found or all regions had been visited. For these sce-
narios, a person was assumed to be at a static location in the
environment. The search for multiple static targets in an in-
door environment has been addressed in (Lau, Huang, and
Dissanayake 2005). A dynamic programming approach was
used to plan the search on a topological ordered graph, us-
ing a probability distribution which models the probability
of meeting one of the targets in a given room at a given time.
In (Tipaldi and Arras 2011), a robot’s ability to blend itself
into the workflows of people within human office environ-
ments was addressed. The authors developed a spatial Pois-
son process which was learned from observations of people
to represent spatio-temporal patterns of human activities. A
Markov Decision Process (MDP) Model was used to gener-
ate a robot’s path through the environment to maximize the
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probability of encountering a person. In (Lau, Huang, and
Dissanayake 2006), the problem of a robot searching for a
moving target within an indoor environment has been ad-
dressed. The Optimal Searcher Path (OSP) Problem, which
models the search for static targets as sequentially search-
ing in adjacent equal-sized parts of an environment, was ex-
tended to: 1) handle different room sizes, and 2) to search
for a single moving target whose movements were modelled
as a Markov Process. A probability distribution over the dif-
ferent regions was used to express the knowledge about the
target’s location. A branch and bound method was proposed
in order to plan a sequence of regions the robot had to visit
in order to maximize the robot’s chances of finding the target
in a given amount of time.

Uniquely our work addresses the robotic search problem
of finding a specific set of multiple moving residents in a
retirement home setting considering their individual daily
schedules. Such schedule-based multi-user search for non-
static people has not yet been addressed in the literature.
To address this problem, we obtain spatio-temporal likeli-
hood functions for every resident of the retirement home.
We propose an approach to generate these resident likeli-
hood functions as a composition of: 1) the residents’ sched-
ules, 2) direct observations by the robot in the environment,
and 3) the layout of the environment. To do this, a weighting
is applied to the above sources of information based on their
time-dependent certainties of predicting a person’s location.
The main contribution of our work is the development of
an MDP planner that uses a novel approach to compute the
reward to determine the robot’s search plan for finding mul-
tiple residents using: 1) the resident likelihood functions, 2)
the availabilities of the individual residents, and 3) the order
in which the residents should be found.

The paper is organized as follows. In section 2 we intro-
duce and formalize the M-USB Search approach. We de-
scribe the resident likelihood functions and define an MDP
Model and an algorithm which generates the robot’s search
plan. In section 3 we describe the simulated experiments as
well as the experiment results and discussion. Concluding
remarks are presented in section 4.

Environment. We model the environment as a set of re-
gions R 2 RE (e.g. rooms, corridors, common areas) in
which the search takes place. For each person p 2 P, where
P is the set of all residents who are living in the environment,
we assign one region of the environment as solely that per-
son’s: his/her private room. For each region, a room-class
C = class(R) 2 CE is assigned, e.g. “Common Room”,
“Bedroom”, “Corridor”, or “Dining Hall”. The room-classes
depend on the activities the residents engage in when they
are in these regions. The room-class Cprivate 2 CE in par-
ticular is the room-class which contains all private rooms.
We define regions(C) to contain all regions R with C =

class(R).

2 M-USB Search
The Multi-User Schedule Based Search presented in this
work is a planning procedure that provides a plan P⇤ for a
robot to find as many people as possible from a given set of

Figure 1: The map of the simulated retirement home with the
rooms: dining hall (A), games room (B), TV-room (C), gar-
den (D), nurse station (E), family visit room (F) and shower
rooms (G). All other rooms are private rooms and corridors.
The color of the regions indicates the current reward for
each region (red: high, white: low) of an example scenario.
The current generated plan has the robot (R) driving to the
TV-room (blue trajectory) where it starts a local search. (H)
shows the crossable edges (doors) in the scaled portion of
the environment.

target people in a given order within a defined time frame.
The retirement home environment is defined to consist of
several different regions which represent the topology of the
building (e.g., rooms and corridors). The plan P⇤ will in-
clude a sequence of actions which model the whole search
process. The possible actions are: drive which lets the robot
travel from one region to another; rest which lets the robot
rest for a short period of time; and search in which the robot
executes a low-level search procedure in a specific region
(e.g., frontier exploration, random walk). We use backwards
induction to compute P⇤ based on a Markov Decision Pro-
cess which models the search using the aforementioned ac-
tions. To obtain a reward for this MDP, we setup a likeli-
hood function for each person which models the probability
that the person is in a specific region at a given time of the
day. The likelihood functions of the individual residents are
combined to generate a reward which respects the target res-
idents’ availability constraints (obtained from their sched-
ules) and the order in which the residents should be found.

This paper will present the computation of the plan P⇤.
This plan is to be executed by a mobile socially assistive
robot that can navigate the environment as well as detect
and recognize individual residents. Once a specific person
is found, the robot greets the person and verbally provides
a reminder to him/her. We assume a local-search routine al-
ready exists on the robot which allows the robot to search for
people in a given region. Once a person has been detected,
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the robot has to compute a new plan (replanning).

Problem Setup
Each region can be represented as a polygon. The edges of
this polygon can be marked as “crossable” if there is no
physical border at an edge (e.g., if the edge represents a
doorway). We define neighbours(R) to be all regions which
share a crossable edge with R, i.e., a person or a robot can
move from R to any region Rn 2 neighbours(R) without
entering a third region. Figure 1 shows an example environ-
ment.

Schedules and Availability of Residents. For each person
p 2 P, we consider a schedule which defines all of his/her
appointments on a given day. An appointment has a start
time and an end time, and is assigned to a region R in which
it takes place. We model the availability of each person p 2
P as function �p(t) such that �p(t) = 1 if p is available at
time t and �p(t) = 0 otherwise.

Motion Model. We assume a simple motion model for the
residents. We model the probability pm(R1,R2, p,�t) that
person p has moved from region R1 to region R2 in the time
frame �t. This probability can be obtained from the per-
son’s speed vp and the distance d(R1,R2) between the two
regions. We define the set Rr

(R, p,�t) which contains all
regions which the person could have entered:

Rr
(R, p,�t) = {R0 | d(R,R0

)  vp ·�t} . (1)

The value of pm(R1,R2, p,�t) can then be obtained as:

pm(R1,R2, p,�t) =

⇢

µ, if R2 2 Rr
(R1, p,�t)

0, otherwise
(2)

with µ = |Rr
(R1, p,�t)|�1. This motion model considers

all possible movements of the resident within the environ-
ment.

Search Query. When the robot receives a query q, it is to
find a set of residents p 2 Pq ✓ P within a given deadline
tmax. Query q also specifies the order in which the residents
should be found.

Setting up Resident Likelihood Functions
For each resident p 2 P, we can set up a likelihood function
L(p,R, t) which represents the probability that p is in region
R at time t. This individual likelihood function is composed
of four different weighted likelihood functions Lk(p,R, t),
with k 2 {s, lkrl, l, env}. These likelihood functions are:
Ls which is obtained by analyzing the resident’s schedule;
Llkrl which is based on the last known location of the res-
ident; Ll which describes the resident’s behaviour that the
robot has learned; and Lenv which can be obtained from
the structure of the environment. We will discuss these like-
lihood functions in the following sections. As convention,
we define 0  Lk  1 and

P

R
Lk(p,R, t) = 1 for each

person p 2 P and each likelihood function Lk. A value
Lk(p,R, t) = 1 means that the person is in R at time t while
Lk(p,R, t) = 0 indicates that the person cannot be in the
region at this time.

Schedule Analyzer. We model Ls(p,R, t) using the
schedule of resident p. Assuming that with a probability of
0  pa  1 the person participates in an appointment de-
fined in his/her schedule, we set Ls(p,R, t) = pa for the
time frame of the appointment for the region assigned to
this particular appointment, and Ls(p,R, t) =

(1�p
a

)
|RE |�1 for

all other regions. For any time tk between two appointments
where the last appointment ends at time tk�1 and the next
appointment starts at tk+1, we define ↵k�1 =

t
k+1�t

k

t
k+1�t

k�1

and ↵k+1 =

t
k

�t
k�1

t
k+1�t

k�1
. If there is no next appointment, we

set ↵k+1 = 0 and ↵k�1 = 1. If there is no previous ap-
pointment, ↵k+1 = 1 and ↵k�1 = 0. We can then define the
likelihood function to be:

Ls(p,R, tk) =

↵k�1 ·
X

R02RE
Ls(p,R0, tk�1) · pm(R0,R, p, tk � tk�1)+

↵k+1 ·
X

R02RE
Ls(p,R0, tk+1) · pm(R,R0, p, tk+1 � tk)

(3)

Last Known Resident Location. To be able to take into
account when the robot last detected a person earlier that
day who it is currently searching for, we set up a database
which stores the time tpd and region Rp

d of the last detection
of person p. Using the motion model of the resident, this
information can be used to generate Llkrl(p,R, t):

Llkrl(p,R, t) = pm(Rp
d,R, p, t� tpd). (4)

If the person has not been previously detected, we assign a
uniform distribution Llkrl(p,R, t) = 1

|RE | .

Learned Behaviour. A person’s behaviour, which is not
defined in the schedule (e.g., a person often takes a walk in
the garden after lunch) but which has been learned by the
robot based on its observations is also stored by the robot
as Ll(p,R, tk), where tk indicates a time step. If no data
from the previous days exist, we assign a uniform distribu-
tion Ll(p,R, tk) =

1
|RE | . During the day the robot remem-

bers whether it detected person p in time step tk in region R.
It saves this information in g(p,R, tk) which is either 1 when
the person has been detected or 0 otherwise. We define:

f(p, tk) =
X

R2RE

g(p,R, tk) (5)

to be the number of regions in which person p has been de-
tected in time step tk. At the end of the day the updated
likelihood function evolves to:

L0
l(p,R, tk) = ↵ · g(p,R, tk)

f(p, tk)
+ (1� ↵) · Ll(p,R, tk) (6)

with 0  ↵  1 if f(p, tk) � 1 and L0
l(p,R, tk) =

Ll(p,R, tk) otherwise.

Environment. The topology of the environment can be
used to generate Lenv(p,R, t). We obtain Cp

private by re-
moving the private room of p from Cprivate and define a
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Figure 2: (a) Weights for one person during the time frame of 10:30 am to 12:30 pm. At 12:00 pm the person has a one-hour
appointment which gives the schedule a higher weight at this time. (b) Priority function for four residents who are all available
in the considered time frame.

new room-class Cp0

private for the resident p, containing only
his/her private room. We define Cp to be:

Cp
= CE \ {Cprivate}

[

n

Cp
private,C

p0

private

o

. (7)

For each room-class C 2 Cp, we define a probability pC(p)
to be the probability that person p is in one of the rooms
in regions(C). Assuming that a person will spend most of
her/his spare time either in her/his private room or in the
common rooms, we assign higher values for Cp0

private and
the room-class containing the common rooms. We apply the
constraint:

X

C2Cp

pC(p) = 1. (8)

We define Lenv(p,R, t) to be:

Lenv(p,R, t) =
pclass(R)(p)

|regions(class(R))| (9)

with class(R) 2 Cp. Lenv(p,R, t) is constant over the day.

Pre-computation. Since the schedules, the topology of
the environment, and the learned behaviour remain the same
once they are provided to the robot at the beginning of a day,
Ls(p,R, t), Ll(p,R, t), and Lenv(p,R, t) can be computed
before a search query is received. Llkrl(p,R, t) is computed
dynamically when the query is received.

Combining the Likelihood Functions for one Person.
The four likelihood functions Lk(p,R, t) can be combined
to generate L(p,R, t). As the certainties with which the four
likelihood functions can predict a resident’s location differ
(e.g., the Last Known Resident Location will have high un-
certainty when the person has not been detected for several

hours, and the Schedule Analyzer will have high certainty
when the person has an appointment), a weighting func-
tion can be used. The certainty of one likelihood function
Lk(p,R, t) can be represented by its variance:

Var(Lk(p,R, t)) =
1

|RE | ·
X

R2RE



Lk(p,R, t)�
1

|RE |

�2

.

(10)
For each likelihood function Lk, we introduce the weight wk

at time t:
wk(t) =

Var(Lk(p,R, t))
P

k

Var(Lk(p,R, t))
(11)

where
P

k

wk(t) = 1. The final combined likelihood function

is defined to be:

L(p,R, t) =
X

k

wk(t) · Lk(p,R, t). (12)

Figure 2(a) shows an example of four weights used for one
resident. Figure 3 shows examples for the different likeli-
hood functions as well as the combined likelihood function
for one resident.

Modelling the Transition System
The objective is to find a sequence of actions the robot
should execute in order to find as many persons as possible
in Pq within the given deadline tmax. We model the search
as a Markov Decision Process. We discretize time using time
steps of duration �t which is the execution time for each
individual action. The M-USB Search is modelled to consist
of three possible action sequences that the robot can perform
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(a) 10:30 am (b) 10:31 am (c) 7:00 am - 7:00 pm (d) 11:58 am

(e) 12:00 pm (f) 11:56 am (g) 11:58 am (h) 12:00 pm

Figure 3: Different likelihood functions for one resident (dark red: high likelihood, white: low likelihood). (a, b) Llkrl(p,R, t)
three and four minutes after the person has been detected in the Games Room (A) at 10:27 am, (c) Lenv(p,R, t) for the resident
living in D. B and C are common rooms. (d, e) Ls(p,R, t) when the resident has an appointment in the Dining Hall (A) at
12 pm, and (f-h) the combined resident likelihood function L(p,R, t) before and during the appointment.

in each region: 1) rest in which the robot rests for one time
step, 2) search in which the robot performs a local search
within the region, and 3) drive in which the robot drives
to one of the neighbouring regions. Since the time it takes to
perform a local search within a region depends on the geom-
etry of the region, we introduce Ts

k to represent the number
of time steps �t a search within region Rk takes. For region
Rl 2 neighbours(Rk), we define Td

k,l as being the number
of time steps the transition between Rk and Rl takes.

The states s 2 S of the MDP represent the states of the
robot, which depend on the region the robot is in and the
current action sequence it is performing. We define the fol-
lowing sets of states Ssk and Sdk to contain all states during
the search and drive sequences for each region Rk 2 RE :

1. Ssk = {searcht
k} with 0  t < Ts

k � 1, and

2. Sdk =

S

R
l

n

drivetk,l

o

with 0  t < Td
k,l � 1, Rl 2

neighbours(Rk).
In addition to the aforementioned states within the search
and drive sequences, we define the state s0k for each region
Rk as the robot’s state: 1) after a region has been entered
by any drive sequence, 2) after the rest action has been ex-
ecuted, 3) after the full search sequence of Rk has been ex-
ecuted, or 4) when the robot is creating a new plan when
being in Rk. The set of all possible states for region Rk is
defined to be:

Sk = {s0k} [ Ssk [ Sdk. (13)
We define the following robot actions ↵ for each region

Rk 2 RE :

1. Ar
k = {restk},

2. As
k = {searcht

k} with 0  t < Ts
k, and

3. Ad
k =

S

R
l

n

drivetk,l

o

with 0  t < Td
k,l, Rl 2

neighbours(Rk).
For each region Rk, the set of all possible actions is:

Ak = Ar
k [ As

k [ Ad
k. (14)

Transitions between the states describe how a robot state
changes when it performs a particular action. In particular,
the successor succ(↵) of action ↵ is defined as the state
which follows ↵. The overall transition system is shown in
Figure 4.

For each action a time-dependent reward R(↵, t) is as-
signed. This reward is evaluated to compute the plan P⇤

and depends on the region in which the action is per-
formed. Therefore, we define a region to each action: R =

region(↵). For each action ↵ in Ar
k and As

k, we define
region(↵) = Rk. For each pair of neighbouring regions
Rk and Rl, we define Td,cross

k,l to be the number of time
steps after which the region Rl is entered during a drive se-
quence from Rk to Rl. We then define region(↵) = Rk if
t < Td,cross

k,l and region(↵) = Rl if t � Td,cross
k,l for each

drive action ↵.

Resident Detection Probability of Actions. Assuming
that during a search the probability that a person who is
in the searched region is detected is different from the
probability that a person is detected while the robot is
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Figure 4: The transition system for an arbitrary region k with neighbours l1, . . . , ln. Being in state s0k, the robot can either rest
one time step, start a full search sequence or a drive sequence to one of the neighbouring regions li with i = 1, . . . , n which
leads to state s0l

i

. Search sequences and the rest action in region k lead to s0k.

just driving between two regions or resting in one region,
we define an attractivity �(↵) with 0  �(↵)  1 for
each action ↵. This attractivity depends on the geometry
of the region R = region(↵). We define the attractivity
�(↵s) = A(region(↵s))

�1 for each search action ↵s with
A(region(↵s)) being the area of region(↵s). We define
�(↵r) = a · �(↵s) with 0 < a  1 for each rest action
and �(↵d) = b · �(↵s) with 0  b  1 for each drive action.
If the robot detects residents with higher probability while
driving then b > a holds; a > b holds otherwise.

Modelling the Order and Availability of Residents
The order in which the residents should be found is given
and has been obtained from the persons’ schedules to avoid
searching for unavailable residents. The robot should try to
keep this order if possible. However, if the robot can max-
imize the number of people found by changing the order,
it can also do so. To search for the residents p 2 Pq in
the given order, we introduce a priority function ⇡p(t) with
0  ⇡p(t)  1 for each person p 2 Pq and apply the follow-
ing constraints:

X

p2P
q

⇡p(t) · �p(t) = 1 8t (15)

and
t
max

Z

t0

⇡p(t) · �p(t) dt =
tmax � t0

|Pq|
8p (16)

which are used to ensure that the same search effort is ap-
plied to all residents during the search process. We model
⇡p(t) to provide a high priority to the time interval assigned
to the resident p based on the given order. However, to allow
the robot to search for other residents p0 2 Pq during this
time interval, we allow ⇡p0

(t) 6= 0 when �p0
(t) = 1. Figure

2(b) shows such a priority function for four people A, B, C,
and D to be searched in this order.

Finding P⇤

In order to find the set of residents within the given deadline,
we define a reward for each action of the MDP model of
the search. The reward is based on the resident likelihood
functions and the availabilities of the residents in Pq , the
aforementioned priority functions and the attractivities:

R(↵, t) = �(↵)·
X

p2P
q

⇡p(t)·�p(t)·L(p, region(↵), t). (17)

Since a deadline tmax is given, the search evolves to be
a finite horizon MDP which can be solved using backwards
induction (Tipaldi and Arras 2011). In particular, the utility
Ut(s) is evaluated for each possible state s at time t using
the Bellman equation:

Ut(s) = max

↵
[R(↵, t) + � · Ut+1(succ(↵))] (18)

where ↵ is any action that can be taken from s and � is a
factor with 0  �  1 which provides a weighting for the
relationship between the importance of rewards which are
earned in the near and in the far future.

The policy ⇧t(s) defines the action ↵ the robot should
take when in state s at time t in order to maximize the re-
ward:

⇧t(s) = argmax

↵
[R(↵, t) + � · Ut+1(succ(↵))]. (19)

We also define the aforementioned finite horizon H = tmax ·
�t�1, which is the number of time steps �t from the start
of the planning process to tmax. The initial state s0 is the
state the robot is in when the plan is determined. Since the
planning procedure will be called at the beginning of the
search and whenever a person has been found, we can define
s0 = s0k with Rk being the region the robot is in.

Given the computed policy ⇧t...H�1, we can generate the
plan P⇤

t,s = {P⇤
(t),P⇤

(t+ 1), . . . ,P⇤
(H � 1)}. This plan

is a sequence of actions as shown in Algorithm 1.
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Algorithm 1 P⇤
t,s(⇧t...H�1)

P⇤
(t) = ⇧t(s);

for k  t+ 1 to H � 1 do
P⇤

(k) = ⇧k(succ(P⇤
(k � 1)));

end for
return P⇤

;

From the backwards induction approach, we know the
plan P⇤

t+1,↵ = P⇤
t+1,succ(↵)(⇧t+1...H�1) when choosing

an action ⇧t(s) = ↵ at time step t. Since we want to de-
crease the reward of a rest or search action when the region
has already been searched in this plan in order to avoid end-
less search loops, we introduce a factor h(P⇤

t+1,↵,↵) which
reduces the reward when region(↵) has been searched in
P⇤
t+1,↵. We define the resulting reward as:

R0
(↵, t) = h(P⇤

t+1,↵,↵) ·R(↵, t). (20)

The value 0  h(P⇤
t+1,↵,↵)  1 depends on when and

how often region(↵) has been searched in this plan. This
greedy approach is shown in Algorithm 2 which can be used
to compute the entire plan P⇤.

Algorithm 2 M-USB Planning
Input: R(↵, t), tmax, S, s0 2 S, �;
Output: Reward maximizing plan P⇤

;

H  tmax/�t;
UH(s) 0 8s 2 S;
for t H � 1 to 0 do
Ut(s) = max

↵
[R0

(↵, t) + � · Ut+1(succ(↵))];

⇧t(s) = argmax

↵
[R0

(↵, t) + � · Ut+1(succ(↵))];

end for
return P⇤

0,s0(⇧0...H�1);

3 Simulated Experiments
Simulation Setup
To test the performance of the M-USB Search, we use a sim-
ulator we have developed to simulate a robot in a realistic
retirement home environment. The simulation was executed
on a Ubuntu machine with an AMD A10-5700 Processor
and 12GB RAM.

Simulation Environment. We created a map of a floor in
a retirement home with 25 residents. The map consists of
the residents’ private rooms, two common rooms (TV-Room
and Games Room), one Dining Hall, two Shower rooms, one
Nurse Station, one Room for Family visits, and an outdoor
Garden. All residents have their own unique schedules for
the day. These schedules contain three meal times, breakfast
(8 am-9 am), lunch (12 pm-1 pm), and dinner (6 pm-7 pm)
during which the residents are available for the robot to in-
teract with them. In addition, each schedule includes one 1-
hour activity during which the residents are also available for
interaction (e.g., walk and reading) and 2 to 4 appointments

during which they must not be disturbed (e.g., doctor’s visit).
In his/her spare time, each resident visits random rooms at
random times. A probability of pmiss = 0.1 is given for the
residents not participating in their scheduled activities and
behaving as if they have spare time. The simulated residents
move with a speed of vp = 0.15m/s. The map used for
these experiments is shown in Figure 1.

Performance Comparison. We compare the performance
of our M-USB Search to both a Weighted Informed Walk
and a Random Walk approach for the problem of a robot
finding a group of residents within a deadline in the retire-
ment home setting in order to remind them of an upcoming
group-based recreational activity. The robot uses a speed of
v = 0.6m/s and can detect people within a sensing range
of r = 1.8m with respect to itself. If one of the searched
residents is found, the robot stops for 1 minute in order to
interact with the found person. The investigated search al-
gorithms are:

1. Random Walk. The robot chooses a random room in the
map, drives to this room and starts a local search in the
room. This is repeated until all target residents are found
or until the deadline is reached.

2. Weighted Informed Walk. Similar to the Random Walk,
the Weighted Informed Walk algorithm picks a random
room, drives there and starts a search in this room. How-
ever, a higher weighting is given to a resident’s private
room and common rooms. Namely, a weighting technique
is applied to identify the importance of the regions accord-
ingly to their room-classes. The weights for the different
room-classes are: 0.5 for the room-class containing the
private rooms of all searched residents; 0.25 for the room-
class containing the common rooms; and 0.25 for a third
room-class containing all other rooms. We assign an indi-
vidual weight to each room in the environment. Namely,
this individual weight is defined to be the corresponding
weight for the room-class the room of interest is in di-
vided by the number of rooms in this room-class. The
robot applies a universal stochastic sampling technique
based on the individual weights of the rooms to choose
a room to search. The algorithm also considers the last 4
regions it has searched and does not search them again
before 4 other regions have also been searched.

3. M-USB-Search. The proposed M-USB Search is used
with a time discretization of �t = 10 s. The schedule an-
alyzer uses �t = 30 s and the database in which the robot
saves the learned behaviour operates with �t = 300 s.
The attractivities for the actions are �(↵d) = 0.9 · �(↵s)

Table 1: The pC values used in the experiments.

Room Class pC
Common Rooms 0.35

Corridors 0.05
Resident’s private room (Cp0

private) 0.4
Rooms in other room-classes 0.2
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Figure 5: Comparison Results: success rates for the different N.

Table 2: Comparison Results: mean search time per person, and number of visited regions within the environment for the
different N.

Mean Search Time (Min.) Visited Regions (mean)
Approach N = 5 N = 10 N=15 N = 5 N = 10 N=15

M-USB Search 10.3 12.1 16.5 48 55 68
Weighted Informed Walk 15.5 18.1 23.2 176 194 202

Random Walk 14.6 15.9 24.0 119 137 214

and �(↵r) = 0.7 · �(↵s). For Eqs. (18) and (19), � = 0.99
is used. For the learned behaviour we use ↵ = 0.1 in
Eq. (6). In Eq. (9) the probabilities in Table 1 are applied
to determine Lenv(p,R, t). To avoid endless search loops
the robot needs to search 4 other rooms before searching
the same room again. In particular, the value of h(P⇤

t+1,↵)

for action ↵ is set to zero when the room region(↵) is
contained in the next 4 searched regions in P⇤

t+1,↵.

Local Search in a Region. As our focus in this paper
is on the high-level search to regions, for this comparison
all aforementioned search approaches use the same random
walk local search approach when they are searching within
the region. The search time in the individual rooms is set to
one second per squared meter.

The Search Queries. Each search approach was tested
with different search queries q, which consisted of a robot
finding N = |Pq| residents within different deadlines d.
We used N = 5, 10, 15 and d = 10, 20, 30, 45, 60, 90, 120
minutes. For all combinations of N and d, we conducted
20 experiments. The robot started in the Games Room at
1:30 pm and searched for residents in Pq in order to invite
them to a Bingo game that started at 4:00 pm. The start times
were chosen such that the robot searched for residents in
a time frame encompassing cases where residents had ap-
pointments, activities and spare time. The time t0 indicates
the time when the query was received.

Search Performance and Runtime
The performance metrics for the comparison are the suc-
cess rate, the mean search time per person and the number
of visited regions during the search procedure. We measure

the pre-computation time needed at software start-up to cre-
ate the MDP model and load the learned behaviour, and set
up the three likelihood functions Ls, Ll, and Lenv . We also
measure the computation times for the single plans (includ-
ing the computation of Llkrl, the rewards, and the policies)
which are computed when a query is received and whenever
a new plan is generated due to replanning when a person has
been found. The metrics are measured for: 1) different val-
ues of K, which represents the number of persons for which
the plan is generated, and 2) for the different plan execution
times, namely the time the robot plans into the future.

Results and Discussion
The comparison results are presented in Figure 5 and Table
2. Figure 5 shows that the proposed M-USB search finds
more persons within a given deadline when compared to
the other two approaches. All search algorithms have higher
success rates for larger d since more residents can be found
when more time is allocated to the search. It is interesting to
note that the Weighted Informed Walk had comparable suc-
cess rates to the Random Walk. We suspect that this is due
to the time of the day in which the search took place. During
portions of the search, some residents had activities in the
garden. For the Weighted Informed Walk approach, the gar-
den (which was not considered to be a common room) had
a lower weight compared to the common rooms (TV-Room
and Games Room) and private rooms. Therefore, these res-
idents were not found in the majority of the searches with
d = 30, 45, 60, 90 when using the Weighted Informed Walk
approach due to the low weight given to the garden, which
prevented the robot to visit this region often. However, these
residents were found using the M-USB Search approach be-
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Figure 6: The M-USB Search computation time needed to
compute a plan for K residents and a plan execution time.

cause the Schedule Analyzer increased the reward for the
garden when one or more searched residents had an activity
in this region.

The measured mean search times per person in Table 2
show that our M-USB Search is the fastest search approach.
Furthermore, our M-USB Search approach finds a person
by visiting the least amount of regions in the environment as
also shown in Table 2. The overall results show that the use
of the persons’ schedules, learned behaviours, the topology
of the environment, and the attempt to keep the search order
in the proposed approach lowers the mean search times and
the number of visited regions, and improves success rate.

The measured mean pre-computation time during system
start-up for our approach was 40.51 s. The computation time
needed when a query was received can be seen in Figure 6.
It is linear for the number of residents (K) for whom the
plan has to be generated since Llkrl and the reward have to
be computed K times. The computation time also increases
with the plan execution time since the reward and the policy
have to be computed for every time step during backwards
induction. In general, the computation times are very short
(e.g., we measure a mean of 4.8 s for K = 15 and a plan
execution time of 120 minutes).

4 Conclusion
In this paper we address the problem where a robot needs
to search for multiple non-static residents within a retire-
ment home environment. We have developed the M-USB
Search planning procedure which generates a high-level-
plan to maximize the number of residents that are found
within a given time frame. We obtain spatio-temporal likeli-
hood functions for the individual residents using the sched-
ules of the residents, the layout of the retirement home envi-
ronment as well as direct observations by the robot. The M-
USB search method uses a novel approach to compute the
reward to determine the robot’s search plan for finding mul-
tiple persons. We have compared our M-USB search method
to a Weighted Informed Walk search and a Random Walk
search for the proposed problem. Our results showed that the

M-USB Search can find the residents in a shorter amount of
time by visiting a fewer number of rooms.
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