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Abstract—In this paper we address the problem of
human-aware coverage planning. We first present an
approach to learn and model human activity events in a
probabilistic spatio-temporal map using spatial Poisson
processes. We then propose a coverage planner for
paths that minimize the interference probability with
people. To this end, we pose the coverage problem as
an asymmetric traveling salesman problem with time-
dependent costs (ATDTSP) derived from the informa-
tion in the map. The approach enables a noisy robotic
vacuum in a home scenario, for instance, to learn to
avoid busy places at certain times of the day such as the
kitchen at lunch time. We evaluate the planner using a
simulator of people in a home environment to generate
typical weekday activity patterns. In the experiments
with a regular TSP planner and two modified TSP
heuristics, the proposed coverage planner significantly
reduces interference with people in terms of number of
disturbed persons and overall disturbance time.

I. Introduction

Robots that operate in human environments require
the ability to sense people and recognize their activities.
But beyond that, they also need the ability to reason
about the places and times when and where people are
engaged into which activity. This knowledge will enable a
robot to coordinate its actions, plans and schedules with
the patterns of human activities, giving it the ability to
smoothly blend into the workflows and daily routines of
people. We believe that this ability is key in the attempt
to build socially acceptable robots.

In this paper, we approach this problem with a plan-
ner of coverage paths that minimize the probability of
encountering people. To this end, we propose the spatial
affordance map, a model that represents human activity
events as a rate function of a non-homogenous spatial
Poisson process. We present how the model is learned
and used for the task of human-aware coverage. This is
an under-explored planning problem to our knowledge,
relevant in all coverage applications in populated envi-
ronments in which the operation of the robot causes a
disturbance to people, or vice-versa, where the presence
of people compromises the robot’s task. In fact, many
coverage tasks occur in inhabited environments. Examples
include vacuum cleaning in domestic scenarios or floor
care, transportation, mail delivery or inspection in pop-
ulated office scenarios.

The paper relates to the problem of coverage path
planning in that it takes an exact cellular decomposition
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Fig. 1. Four agents (shown as green-colored cylinders) engaged in a
dining activity in our simulator. Two agents are in the dining room,
two agents are in the kitchen. The vacuum robot (circle) is in the
hallway since it has learned that at this particular place and time,
the probability to encounter someone is minimal.

of the environment with cells corresponding to ‘rooms’
connected in a graph topology. We assume that the robot
is equipped with a coverage algorithm for each cell/room,
either randomized or systematic. We then extend the state
of the art by addressing the novel question how robots can
optimally cover an inhabited environment. Unlike previous
works on coverage in robotics where authors optimized
time to completion, path length or the number of turns
(see [1] for a survey), we seek the most socially acceptable
way to fulfill this task based on a previously learned
probabilistic model of people’s space usage.

The paper is structured as follows: section III gives
the theory of the spatial affordance map and describes
learning and inference in the map. Section IV develops the
planning algorithm followed by Section V that describes
the people simulator we used in the experiments. Sec-
tion VI contains the experimental results and section VII
concludes the paper.

II. Related Work

With growing presence of robots in inhabited envi-
ronments, human-aware planning is a field of increasing
activity. The problem has a motion planning and a task
planning aspect. Most authors address the problem as a
local motion planning problem over short time and space
scales. Their purpose is typically to produce acceptable or
safe robot motion for interaction, navigation, or manipu-
lation among people [2, 3, 4]. Human-aware task planning,
where this work is to be placed, is a relatively new field.
Closest are the works presented in [5, 6, 7].



Alami et al. [5] propose a decisional framework for
human-robot interactive task achievement. The framework
relies on known sets of actions that humans and robots
can carry out and allows for the specification of social
constraints that can encode human preferences or needs.
Using a hierarchical task network planner the framework
generates plans towards joint robot/human goals under
such constraints. Broz et al. [6] recognize that the explicit
representation of time in models for human-robot inter-
action is important for achieving good performance. They
model interactions as a POMDP with a time index as part
of the state and propose time-state aggregation to reduce
the resulting very large state spaces. The approach is able
to efficiently choose optimal robot policies for simple time-
dependent interaction scenarios. The planner of Cirillo et
al. [7] generates policies conditioned on on-line recognition
of human plans. Enumerating all possible human actions
in a discrete state space, the planner incorporates domain
knowledge as temporal logical expressions that help to
prune the (potentially very large) search tree. In a simple
vacuum cleaner scenario they also aim at a robot that is
able to avoid disturbance of a human. The robot’s capacity
to anticipate forthcoming actions of humans is delegated to
a human plan recognition system assumed to be available.

The major difference to these works is that here we use
learning to acquire a model of human activities prior to
planning. This enables the robot to reason about and plan
with expected forthcoming human actions. The resulting
plans are optimal with respect to minimal or maximal oc-
currence probabilities of the learned human activities and
can optionally be combined with sensor-based replanning
during plan execution.

Learning human behavior models in robotics has been
addressed by several researchers. Mostly, the focus lies on
the description of human motion.

Kruse and Wahl [8] propose statistical grids whose
cells hold temporal occupancy probabilities of people and
stochastic trajectories which are paths of dynamic objects
along which their appearance probability is modeled by
a Poisson process. The goal is to assess and plan mini-
mal collision probability paths. The grid and the trajec-
tories are learned from ceiling-mounted cameras. Bruce
and Gordon [9] learn goal locations in an environment
from trajectories obtained by a laser-based people tracker.
Based on the assumption that people move in a goal-
oriented fashion, paths are planned from the location of
a person being tracked to the goal locations. Bennewitz
et al. [10] learn typical motion patterns that people follow
in an environment. The approach collects trajectories of
people with multiple statically mounted laser scanners and
combine similar trajectories to motion patterns using EM
clustering. From each pattern a Hidden Markov Models is
derived which enables a mobile robot to predict the motion
of people and to adapt its navigation behavior accordingly.

Not only focused on the aspect of human motion is
the work by Ihler and Smyth [11]. The authors presents
a non-parametric approach to learn time profiles of hu-

man activities. The rate function of a Poisson process is
learned using non parametric Bayesian models: the infinite
mixture model with a Dirichlet process prior. Although
interesting and related to our work, their approach does
not consider the spatial variation of activities.

These works consider either the special case of human
motion or lack the ability to make inference in both time
and space. In contrast, the spatial affordance map is a
single representation for inference about spatio-temporal
behavior of people that coherently relates time, space and
occurrence probability of activity events. It is able to
process queries that ask for occurrence probability, time
and space, respectively. The map has been first introduced
to learn spatial priors of human motion that lead to
considerably more accurate tracking of people [12, 13] and
then extended to address more complex inference problems
for planning. In an accompanying paper [14] the map has
been used for the dual problem of learning to find paths
that maximize the probability to encounter humans, solved
with a variant of an MDP planner.

III. Spatial Affordance Map

In this section we briefly summarize the spatial affor-
dance map to introduce the background and notation
needed to fomalize the minimum interference coverage
problem. More details on the map can be found in [13,
14].

The spatial affordance map is a non-homogeneous spa-
tial Poisson process. Under the assumption that events in
time occur independently of one another, a Poisson pro-
cess can deal with distributions of time intervals between
events. Concretely, let N(t) be a discrete random variable
to represent the number of events occurring up to time
t with rate λ. Then we have that N(t) follows a Poisson
distribution with parameter λt

P (N(t) = k) =
e−λt(λt)k

k!
k = 0, 1, . . . (1)

In general, the rate parameter may change over time. In
this case, the generalized rate function is given as λ(t) and
the expected number of events between time a and b is

λa,b =
∫ b

a

λ(u) du. (2)

A homogeneous Poisson process is a special case of a non-
homogeneous process with constant rate λ(t) = λ.

The spatial Poisson process introduces a spatial depen-
dency on the rate function given as λ(~x, t) with ~x ∈ X
where X is a vector space such as R2 or R3. For any subset
S ⊂ X of finite extent (e.g. an area in space), the number
of events occurring inside this area can be modeled as a
Poisson process with associated rate function λS(t) such
that

λS(t) =
∫

S

λ(~x, t) d~x. (3)

Learning the spatio-temporal distribution of events in an
environment is equivalent to learn the generalized rate



function λ(~x, t). However, learning the full continuous
function is a highly expensive process. For this reason, we
approximate the non-homogeneous spatial Poisson process
with a piecewise homogeneous one. The approximation is
performed by discretizing the environment into a tridimen-
sional grid, where each cell represents a local – in terms
of space and time – homogeneous Poisson process with a
constant rate,

Pijτ (N(t) = k) =
e−λijτ (t−tτ )(λijτ (t− tτ ))k

k!
(4)

with k = 0, 1, . . . and tτ ≤ t < tτ+1 and where λijτ is
assumed to be constant and the indices refer to a particular
cell in the discretization. Finally, the spatial affordance
map represents the generalized rate function λ(~x, t) using
a grid approximation,

λ(~x, t) '
∑
ijτ

λijτ1ijτ (~x, t) (5)

with 1ijτ (~x, t) being the indicator function. Other tessella-
tion schemes in space and time such as octrees, regions of
homogeneous Poisson rates or function approximators [11]
can equally be used.

We take a Bayesian learning approach using Gamma
priors to estimate the Poisson rate parameter of each cell.
We discard a maximum likelihood approach since, without
priors, it cannot properly initialize never observed cells.
The Bayesian approach leads to easy-to-implement count-
ing expressions in a grid. This makes life-long learning
particularly simple as new information can be added at
any time by one or multiple robots. The map is then
learned from human activity observations k1,...,n that can
be obtained either from ceiling-mounted cameras [8], wear-
able devices or the exteroceptive sensors of the mobile
robot [13]. Here they will come from a people simulator
described in Section V.

The spatial affordance map (whose name lends itself
from the view of human activities as affordances of an
environment) can model all perceived types of human
activities, each type in a separate layer of cells. Here,
we only consider the activity of being at a given place
and time. This information allows to reason about robot
actions that minimize (or maximize) the time a robot
interferes with a person.

IV. Minimum Interference Coverage

As stated in Section I, we decompose the environment
into cells that, without loss of generality, correspond to
rooms in the environment. The rooms are nodes in a
graph whose optimal coverage in terms of execution time is
obtained by solving a Traveling Salesman Problem (TSP).
Here, we intend to minimize the encounter probability
of people based on the learned map. This problem can
be modeled as an asymmetric traveling salesman problem
with time-dependent costs (ATDTSP). The asymmetry
here arise from the time-dependent structure of the costs:
going from node a to node b is different than going from b

to a since the nodes are visited at different times and thus
have different costs.

Formally, let G = {V, E} be a weighted graph with
weights on the nodes and the edges. We define the set
of vertices, V, to be the set of cells in the environment
and E the set of edges to encode the connectivity among
them. The weight of a vertex vi is computed considering
the time when the vertex is visited, t, and the duration to
perform the coverage task, tV . The resulting cost is then

Wi(t) =
∫ t+tV

t

∫
A(vi)

λ(~χ, t) d~χ dt, (6)

where A(vi) represents the area occupied by the vertex vi.
Similarly, the weight of an edge eij = (vi, vj) is computed
as follows

Wij(t) =
∫ t+tE/2

t

∫
A(vi)

λ(~χ, t) d~χ dt +∫ t+tE

t+tE/2

∫
A(vj)

λ(~χ, t) d~χ dt, (7)

where the two integrals represent the fact that the robot
moves from the center of one cell to the center of the
other cell. Note that the size of a room is not a sensible
parameter, since the cost of a node already accounts for
the room size.

The obtained graph can not be directly used in the
ATDTSP setting due to its sparse structure. The graph
is transformed into a fully connected one using a modified
version of the Floyd-Warshall algorithm that takes into
account time variable costs, see Algorithm 1. In order to
reduce the computational complexity and to avoid the
search in the full continuous range of the time variable,
the time axis is discretized into regular intervals. This is
equivalent to assume that the time spent to travel between
two nodes is negligible with respect to the time spent
in a particular node. Note that this assumption do not
relax the asymmetry of the problem, since time is spent
in visiting a node.

The final ATDTSP problem can then be solved by
modifying the dynamic program approach for the standard
TSP. Let v0 be the initial vertex and S ⊆ V such that
v0 ∈ S. Given vi 6= v0, vi /∈ S, we define C(S, i) be the
cost of the optimal path that starts at v0, visits all nodes
in S and ends at vi. With ti = t0 + i(tR + tl), the optimal
solution can then be defined in the following recursive way

C(S, k) = min
m∈S

{C(S,m) + Wmk(t|S|) + Wk(t|S|+1)} (8)

with the initial condition

C({v0}, k) = W0(t0) + W0k(t0) + Wk(t1). (9)

The resulting program is shown in Algorithm 2.
The complexity of the optimal algorithm is high both

from the computational, O(n22n), and the memory point
of view, O(n2n). This reduces the applicability of the
algorithm to small domains with ' 20 rooms for standard
PCs. For this reason, we also consider two well-known



Algorithm 1: Time dependent Floyd-Warshall
In: A partial connected graph G = {V, E}
Out: The fully connected graph G = {V, E}
// The edge costs for each timestep

1 float C[ ][ ][ ]
// The predecessor node for path recovering

2 int P[ ][ ][ ]
3 Initialize C from (7)
4 for t← 0 to |V | do
5 for k ← 0 to |V | do
6 for v ← 0 to |V | do
7 for u← v + 1 to |V | do
8 if C[v][k][t] + C[k][u][t] < C[v][u][t] then
9 C[v][u][t] = C[v][k][t] + C[k][u][t]

10 P[v][u][t] = k
11 end
12 end
13 end
14 end
15 end
16 Update the new edge costs from C
17 return G

heuristics for the TSP. We modified the nearest neighbor
and the greedy heuristic to work with time dependent
costs.

The nearest neighbor heuristic builds a path incremen-
tally, always visiting the unvisited node with the minimum
cost at each step. To make it work with time dependent
costs, we simply use the costs computed from the actual
time step to choose the next room.

The greedy heuristic builds a path by choosing the edge
with the minimum cost that leads to a valid path. The
chosen edge does not need to connect the last visited node,
as in the nearest neighbor case, but needs to satisfy a set
of conditions:

• It connects two unconnected nodes,
• It does not create a loop,
• It is the only edge selected for that time step,
• It follows the direction of the previously selected edges

(each node in the path must have only one incoming
and one outcoming edge),

The last two properties are specific for the ATDTSP. The
computational complexity of the two heuristics is O(n2)
for the nearest neighbor and O(n3) for the greedy method.
Both have linear memory requirements.

V. Simulator

For evaluating the model and the planner, we developed
a people simulator that models human activities of agents
in a home environment (Fig. 3). Simulation is required
in our case since with real humans, experiments cannot
be reproduced and simulated agents do not change their
behavior in the presence of robots.

The simulator models typical home activities of multiple
agents during a work day from 8 am to 11 pm. The pat-
terns of each agent on each day are generated by sampling
from a discrete distribution that describes the occurrence

Algorithm 2: Dynamic programming for ATDTSP
In: A fully connected graph G = {V, E}, an initial node v0

and time t0
Out: The minimum cost path P
// The cost of optimal paths (see (8))

1 float C[ ][ ]
// The predecessor node of the optimal paths

2 int P[ ][ ]
3 Initialize C from (9)
4 for i← 2 to |V | do
5 foreach S ⊆ V, |S| = i do
6 foreach u ∈ S, u 6= v0 do
7 Find v that minimizes (8)
8 Update C[S \ {u}][u] according to (8)
9 P [S \ {u}][u]← v

10 end
11 end
12 end
13 v∗ ← argminv C[V \ {v}][v]
14 S ← V \ {v∗}
15 while |P| 6= |V| − 1 do
16 v∗ ← P [S][v∗]
17 P ← v∗ ∪ P
18 S ← S \ {v∗}
19 end
20 P ← v0 ∪ P
21 return P

probabilities of a number of predefined activities. These
activities are scripted by hand and reflect typical work day
activities of a family with two kids according to the best
of our knowledge. Fig. 4 depicts example activity profile
of the four agents. The day starts with breakfast and
bathroom activities before three agents leave to house for
work and school. At lunch time, the family gets together.
Two agents leave the house again during the afternoon.
The evening includes cooking, a common dinner, and
several distraction-related activities before everyone goes
to bed. While the exact courses of activities may strongly
vary in practice, we found no indication in our experiments
that different or more elaborated activity patterns would
influence the results. The subdivision of the environment
into rooms and the graph topology is shown in Fig. 2.

The simulator engine follows the three-layered agent
architecture from [15] that in our case consists in the layers

Fig. 2. The graph and room annotations of the home environment.



Fig. 3. The simulated home environment inhabited by four agents
that engage in activities typical for a family with two kids.

activity scheduler, activity executor and action executor. At
the beginning of the day, the activity scheduler generates
a fixed schedule of the day for each agent. By randomly
sampling from the discrete distributions, each day has a
different schedule leading to variability in the patterns.
Both the distribution and the sampled schedules are not
known to the planning algorithm.

Every activity is composed of a set of actions such as
enter, move, stay or leave, which in turn are activated and
deactivated by the activity executor. Once an action is
activated, the action executor takes care of its progress
and signals back when it reached its final state. The
actual plans are generated using A* with action costs
that are randomly perturbed to simulate some motion
variability. The simulator is also given the designated
places at which activities are carries out (the patio for
smoking, the kitchen for cooking, etc.). Finally, each time
an agent is engaged into an activity, its type and place
form an activity observation ki to learn the map.

VI. Experiments

For the experiment, the map is learned from activities of
four agents over ten days, followed by a series of ten testing
days. We use a grid resolution of 0.25m in x and y and 1
hour in time resulting in 15 time slots for the household
scenario. For our simulated vacuum robot, we generate
500 randomized start locations and times such that the
coverage task can be finished before the end of the day
at 11 pm. For testing, we vary the cleaning time per room
from 15 minutes to 1 hour and measure the amount of time
the robot is in the same room with a person and how many
people have been disturbed along its path. Disturbing the
same person in two different rooms is counted twice.

The experiment demonstrates the ability of the AT-
DTSP planner to generate optimal paths in terms of
minimal interference while being able to cover the entire
environment. We compare the optimal paths computed
with the dynamic programming approach (DP) with the
two heuristic strategies, nearest neighbor (NN) and greedy
(GR), and a regular TSP strategy that minimizes the time
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Fig. 4. Example activity profiles of the agents in the home en-
vironment and the robot. For the activities Work and School the
human agents leave the house. All others are carried out at designated
places in the environment shown as blue circles in Fig. 3. The bottom
diagram shows an example coverage path of the robot which chooses
the rooms in a way to avoid people. The kitchen, for instance, is
cleaned last when the agents mainly stay in their bedrooms or in the
living room.

to completion ignoring the map (CV). Comparison with
the latter reveal the impact of the spatial affordance map.

Figure 5 shows the results. The DP approach outper-
forms the two heuristic planners and the optimal Eu-
clidean path both in terms of the average number of
disturbed people and the average overall disturbance time.
For the maximum considered cleaning time per room, our
solution yields a three-fold improvement of the number
of disturbed people and an almost five-fold improvement
of the disturbance time. Further, the DP planner is very
weakly correlated with the length of the coverage task,
showing that it can effectively account for the time vari-
ance of the problem. An interesting aspect is that the two
modified heuristics (NN and GR) are relatively sensitive
to changes in the coverage time and perform poorly with
respect to the optimal solution. This demonstrates that
classic TSP heuristics do not work well with time vari-
ability of costs and asymmetry in the graph and that new
heuristics should be developed for this class of problems.
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Fig. 5. Minimum interference coverage experiment. The picture
shows the average number of people disturbed (top) and the average
total interference time (bottom) versus the time to clean an individ-
ual room. The optimal solution to the ATDTSP problem outperforms
the other alternatives in all aspects.

Lastly, the poor performance of the regular TSP strategy
confirms clearly that the spatial affordance map provides
valuable and effective information on human space usage
that should not be ignored for coverage tasks in populated
environments.

VII. Conclusions

In this paper, we developed a human-aware coverage
planner to generate paths that minimize the interference
probability with people. This problem is relevant for both,
robots that seek to increase their social acceptability and
robots whose efficiency is compromised by the presence of
humans.

To this end, we proposed the spatial affordance map, a
model that represents human activity events as a learned
rate function of a spatial Poisson process and showed
how the map can serve as a cost model for planning.
Using this model, we formulated the minimal interference
coverage problem as an asymmetric traveling salesman
problem with time varying costs (ATDTSP) and developed
a dynamic programming approach to solve the problem
optimally. In the experiments, we compared the optimal
solution to two standard heuristics in the TSP literature
and a regular uninformed TSP planner.

The results showed very clearly that the proposed ap-
proach outperforms both the heuristics and the regular
TSP planner in terms of the number of disturbed persons
and the total disturbance time. The outcome confirms
the appropriateness of the spatial affordance map as a
model to forecast human actions in time and space. It also
shows that the classical TSP heuristics perform poorly on
the ATDTSP since the latter is much harder in terms of
combinatorial structure than the regular symmetric TSP.

Currently, the optimal DP planner takes several seconds
to complete a coverage plan in the considered home envi-
ronment. Since this can be a limitation for low-cost robots
with constraint embedded CPU power, future work should
focus on novel heuristics for the ATDTSP for more efficient
yet near-optimal solutions in large domains.
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