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Abstract In this paper, we present FLIRT that stands for Fast Laser Interest Region
Transform, a multi-scale interest region operator for 2D range data. FLIRT com-
bines a detector based on a geodesic curve approximation of the range signal and a
descriptor based on a polar histogram of occupancy probabilities. This combination
was found in a set of comparative benchmark experiments on standard indoor and
outdoor data sets. The analysis yields repeatability and matching performance re-
sults similar to the values found for interest points in the computer vision literature,
encouraging a wide application of FLIRT on 2D range data. We show how FLIRT in
conjunction with RANSAC can be applied for loop closing, global localization, in-
cremental mapping and pose-based SLAM with particularly simple algorithms. The
results demonstrate that FLIRT features have a great potential for robot navigation
in terms of precision-recall performance, efficiency, generality and simplicity.

1 Introduction

The introduction of local image features had a large impact on many computer vi-
sion tasks such as object and scene recognition, motion tracking, stereo correspon-
dence, or visual robot localization and SLAM. The typical strategy is to select lo-
cations of interest in image space and compute a distinctive descriptor over regions
centered around these locations. This yields a description of the image content as
a collection of local interest regions that can be used for matching. For both, the
detection of stable locations and the description to encode the image structure, there
is a great variety of approaches available for image range data [13, 12].

The same reasons that make interest points attractive for the above mentioned
domains also apply to 2D range data as produced by the widely employed laser
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Fig.1 Example matching of two scans from a laser range finder of the same scene using RANSAC.
The figure shows the extracted FLIRT features for both scans and the 16 inlier correspondences.

scanners in robotics. For robot navigation, interest points have the potential to be
an alternative to feature-based and grid-based approaches. While both paradigms
have been proved to be successful under application-like conditions [18, 2], they
both have strengths and weaknesses. Geometric features allow for compact map
representations and high accuracy but rely on predefined models. Dense approaches
using raw data or grids are general in this sense but scale less well with map size
and dimensionality. Interest points, on the other hand, combine the compactness of
discrete features and the generality of raw range data.

A comparison of different detectors and descriptors for images can be found in
Mikolajczyk et al. [13, 12]. For 3D data, several methods have been proposed to
extend the scale space from images to 3D point clouds, replacing the regular im-
age lattice with surfaces represented by a connectivity mesh. A seminal work by
Taubin [17] replaced the continuous Laplacian operator V from the diffusion equa-
tion by its discrete counterpart, the graph Laplacian V,. A different approach has
been proposed by Pauly et al. [16], where a surface variation quantity is computed.
This quantity is formed by the eigenvalues of the sample covariance matrix com-
puted in a local neighborhood of sampled points. Novatnack and Nishino [14] detect
multi-scale features using a representation of the surface geometry. This representa-
tion is encoded by the surface normals embedded in a regular and dense 2D domain.
The approach, however, relies on a connectivity mesh to construct the parametriza-
tion, and on the availability of good surface normals. Unnikrishnan et al. [21] define
an integral operator that maps the input curve into its multi-scale parametrization.
The operator is defined in geodesic coordinates along the curve with interest points
found as local extrema in a geodesic neighborhood. Using data from a laser range
finder, Cole et al. [7] propose an information-theoretic measure of local saliency to
find natural features in measurement space. However, the saliency computation is
expensive for an exhaustive search and the authors compute the saliency values only
for randomly picked points.

For 2D range data, there is little related work. Closest to this paper is the line of
work by Bosse and Zlot [5, 6]. In [5] the authors define entire laser scans as features
and use orientation histograms to describe them. In [6], several detector/descriptor-
pairs for 2D range data are evaluated for the task of place recognition in a graphical,
submap-based SLAM application. While interesting, the main difference to our ap-
proach, is that with descriptor support regions of 9 x 9m defined on submaps that
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are collection of 20-30 scans spaced 1—2m apart, their approach is a submap char-
acterization technique rather than a local interest point operator. While this property
was not a limitation for obtaining the good results presented in [6], we are interested
in designing a general-purpose multi-scale keypoint for 2D range data that retains
the important concept of locality which was key to the success of visual interest
points. FLIRT features have been designed in this spirit: they are defined locally (in
support regions of typically 0.5m radius) and on a single scan.

The reasons why 2D range data are different from image data and 3D point clouds
are manifold. As a naive approach, one could apply the techniques from computer
vision to range data, replacing the image intensity values with the range signal.
While this approach leads to some results, it is not able to deal with many interest-
ing structures since range variations around such structures can be weak (corners
are an example). This is because the nature of range data is different from the na-
ture of image data in that range data represent a manifold in a higher-dimensional
space. In the case of 3D range data, this manifold is a surface in 3D, for 2D data
it is a curve in Cartesian space. Further, for range data, measurement sparsity is
highly non-uniform and view-point variant, partly due to the low angular resolu-
tion of range finders compared to cameras. These differences motivate a specifically
derived interest point transform for 2D range data.

This paper extends our previous work [19] where we compared several detector
and descriptor approaches for 2D range data and proposed FLIRT as the most pow-
erful combination in terms of stability and matching performance. Here, we report
on comprehensive experiments with FLIRT applied to navigation problems such as
global localization, loop closing, incremental mapping and SLAM.

The paper is structured as follows. Section 2 presents the FLIRT detector and
descriptor. How FLIRT can be applied to robot navigation is described in Section 3
with the experimental results given in section 4. Section 5 concludes the paper.

2 FLIRT

In this section we present the Fast Laser Interest Point Transform (FLIRT), a multi-
scale interest point operator for 2D range data. The operator consists in a detector
based on a geodesic curve approximation of the range signal and a descriptor based
on a polar histogram of occupancy probabilities. This particular combination is the
result of a comprehensive evaluation [19], where we compared four different detec-
tors and two descriptors in a set of benchmark experiments. We will now describe
the FLIRT detector and descriptor.

2.1 Curvature-Based Detector

The detector is derived from the approach by Unnikrishnan and Hebert [21] for 3D
point clouds, applied onto 2D range data. The rationale behind this detector is that
range data define a curve in Cartesian space and the scale space theory should be
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Fig. 2 Curvature-based detector on synthetic data. The detector finds the background of the range
discontinuity on the largest scale (left, red circle), the foreground on all scales, responds on all
scales for the convex corner, and on scale 1 and 2 for the the obtuse concave corner. The diagrams
at the right show the interest points in signal space, with the raw range signal and its smoothed
variants at each scale (top) and the exponentially damped signal F (x;7) on all scales (bottom). The
maxima at the start and the end are ignored as they are caused by the non-circularity of the data.

applied to this curve and not to the original signal. The authors define an integral
operator that maps the input curve into its multi-scale parametrization

S(au(s);r) = /F (s, 1) 0¢ (1) du (1)
k(s,u;t) = AN (s—ust) 2)

where I' is the curve, o/(s) the parametrization of the curve by the geodesic co-
ordinate s and k(s,u;t) is a Gaussian kernel. The operator is then made invariant
to the sampling density of the curve by normalizing the smoothing kernel with the
(unknown) sampling density p(s;t),

~ v k(s,usr)
k(S,M,l) = m (3)
p(s;t) = /k(s,u;t)p(u)du. %)

The sampling density p(s;#) at scale ¢ is approximated by local kernel density esti-
mation using Gaussian kernels. This yields a curve for each scale,

S(a(s);t) = /F R(s, 1) 0c(u)dus, )

of increased smoothness for increasing #’s. Interest points are then detected by find-
ing the local maxima of the exponential damping expression

2||x—S(a(s);0)]| _ 2r-S(a(s))]
="

F(x;1) ;

(6)

with the term ||x —S(a(s);¢)|| being an error distance in Cartesian space between the
original curve and its smoothed versions S((s);¢). With this method, interest points
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Fig. 3 The B-grid descriptor (center: occupancy probability, right: variance) for an example inter-
est point in real data.

at a scale ¢ correspond to places where ¢ equals the inverse of the local curvature of
the smoothed signal S(a(s);?).
Example detection results are shown in Figures 2 and 4.

2.2 B-Grid Descriptor

An important difference between image and range data is that range data encode
metric distance but also directed free-space information between the sensor (emit-
ting light or sound) and the measured object. Occupancy grids naturally deal with
free-space information which is why we adopted this concept for our purpose of
building meaningful descriptors for 2D range data. Concretely, for each detected
interest point py,; we define a polar tessellation of the space around pdetl. This
tessellation is linear in polar space, with a radius proportional to the scale of the
interest point. For estimating the occupancy probability, we apply Bayesian param-
eter learning. This approach provides a sound way to initialize cell probabilities and
delivers variance estimates over the occupancy values.

We now derive the expressions for Bayesian parameter estimation for occupancy
grids. Consider the j-th bin, whose likelihood to be hit by the beam b follows a
Bernoulli distribution, parametrized by the bin occupancy probability occ;, where
b is equal to 1 when the laser beam is reflected inside the bin (hit) and is equal
to 0 when the laser beam traverses the bin (miss). The occupancy probability is
modeled using the conjugate prior of the Bernoulli which is the Beta distribution,
a continuous distribution defined on the interval [0, 1] and parametrized by the two
positive shape parameters ¢ and 3,

o—1(1_ N\B-1
pploccj;a,B) = 2 B((la E)CC}) @)

with B(¢t, B) being the Euler beta function. Learning the occupancy probability occ;
consists in estimating the parameters of a Beta distribution (hence the name of the

! Note that the interest points define also a direction, given by curvature. This direction is used to
obtain rotation invariance
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Fig. 4 Example FLIRT detection result in indoor (mit-csail, left) and outdoor (fr-clinic, right) data.
The circles show the interest points and their support region (the actual descriptors are not shown).

descriptor). Over a sequence of measurements, that is, a sequence of beams {b;}_
that either hit or miss the bin, it can be shown that the update rules are

w=o0i+Y 1% =B+ Y10, (8)

For i = 0, both parameters are set to 1 for which the Beta distribution is uniform
over [0, 1]. The point estimate occ; is then the expected value of the posterior Beta
distribution

. o #hits + 1 ©)
C; = =
O T G+ B #hit + #misses + 2
Accordingly, the variance of this probability is
op
var(occj) = . 10
(occ)) (a+B)*(a+p+1) (19)

The collection of occupancy probabilities together with their variance estimates
in the polar histogram make up the beta grid descriptor of pg,, (see Fig. 3).

3 Applications

We will now explore the potential of FLIRT for robot navigation. We apply FLIRT
features to global localization, loop closing, incremental mapping and pose-based
SLAM and show how these navigation tasks can be addressed successfully using
only off-the-shelf RANSAC and a graph optimizer. Dead reckoning is only needed
in the exceptional case of featureless places (e.g. structureless infinite corridors),
where the system can either fall back onto odometry or a constant velocity motion
model. Apart from such cases, data association with FLIRT is entirely appearance-
based and does not rely on pose estimates, known to be highly error prone.
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Algorithm 1: FLIRT-SLAM

Input: The scan z; and map m;_| = {(z7 F )6’] RO } with ¢ being the pose network
Output: The map m, = {(z, 9‘)6,%}

1 % <« FLIRT(%)
2 (x%,%4-1,%) < RANSAC(S,F—1)
3 Add node x; to %,
4 foreach (z,.#); € mdo
5 (xt,%,€) < RANSAC(F, Fi)
6 if €] > n" and Error(x;) < Epqy then
7 | Add constraint (x; ©x;,%;) to %,
8 end
9 end
10 % «— TORO(%-1)

3.1 Global Localization and Loop Closing

Global localization is the problem of estimating the robot’s pose given a sensory
observation and an a priori map. This is a relevant problem, e.g. for loop closing in
SLAM where the robot has to decide if and where the currently observed place has
already been visited. Assuming the map m to be a network of nodes that each hold
the corresponding robot pose, a scan z and the corresponding FLIRT feature set .%,
global localization can be easily solved in linear time using RANSAC.

The association of two scans by matching their feature sets .%;,.%; is as follows.
After feature detection, the first step is to compute a candidate correspondence set
by matching the descriptor vectors. This matching is done using the symmetric >
distance and a nearest neighbor strategy with a threshold of 0.4. With the candidate
correspondence set as input, RANSAC returns the displacement between the feature
sets, x;;, the set of inliers ¢, and the residual error e. The inlier probability is set to
0.3. If the number of inlier correspondences is above a threshold, n;”i”, the solution
is considered a match. The displacement estimate is then refined in a least-squares
sense using the full inlier set. See Fig. 1 for an example match.

In pose tracking, the procedure delivers a set of weighted samples, with po-
sitions obtained by RANSAC and weights as the inverse of the residual error.
These samples approximate the pose distribution given the observation and the map,
p(x¢|z¢,m), which can be used in many Bayesian filtering schemes for localization.

3.2 SLAM and Incremental Mapping

FLIRT features allow for both a feature-based SLAM approach (like [1] using visual
keypoints) or a pose-based SLAM approach (like [9] based on full scans or [6]
using keypoints). With data association purely based on appearance, the pose-based
approach appears to be a natural choice that is taken here. As SLAM back-end, we
use the TORO graph optimizer from [9].
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SLAM with FLIRT features can then be carried out by the compact Algorithm 1.
At start, the algorithm is called with an empty map m = {}. It adds new nodes
incrementally and, for each pose, looks for valid constraints in the map. No dis-
tinction has to be made between local constraints from incremental matches and
global constraints from loop closures. A constraint is valid if the inlier set is large
enough, |€| > n}’””, and the reprojection error from the full scans is below a thresh-
old Error(x;) < Emq. The second condition is to further ensure geometrical cor-
rectness of a match. The algorithm produces locally dense pose graphs where nodes
are interwoven up to the point where the overlap between scans becomes too small
for a valid RANSAC match.

If an environments contains symmetries (places that look alike) or featureless
areas, appearance-based data association is not enough and poses need to be con-
sidered. For the former case, an additional test on the consistency of the candidate
constraints is performed. To do so, we propagate the estimated covariances over the
shortest path between the two edges (found by Dijkstra’s algorithm) and perform a
validation test at a significance level of 0.95. Like in [20], covariances of a scan-
to-scan match, X, are computed by propagating the errors from the interest points
across the least squares displacement expressions. This adds another condition into
line 6. The situation where not enough interest points are extracted and the system
falls back onto odometry requires two more lines, a test and the query to odometry.

Algorithm 1 also applies to the problem of incremental mapping or scan match-
ing. Using local interest points for 2D range data, incremental mapping has the same
problem statement than visual odometry and can be solved with bundle adjustment
techniques. In fact, Algorithm 1 implements a pose-based variant of bundle adjust-
ment: after extraction of FLIRT features from the current scan, they can be matched
to the previous n scans from a sliding window % . Each successful RANSAC match
with a scan within % produces a displacement that is added as a constraint into the
pose graph. A simple change to Algorithm 1 implements this: the set from which
scans are picked in line 4 is changed from m to # . In this manner, Algorithm 1
implements both, SLAM and incremental mapping.

4 Experiments

The experiments have been carried out with five standard data sets, three indoor
log files (fr-079, intel, mit-csail) and two outdoor log files (fr-clinic, Victoria park).
These data sets have been collected by several researchers and are freely available
(http://radish.sourceforge.net). For the experiments in dynamic environments, we
collected additional data in the Freiburg main station.

4.1 Global Localization and Loop Closing

To perform the evaluation of FLIRT for the tasks of global localization and loop
closing, we process all log files with the SLAM approach of Grisetti et al. [9] to
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Fig. 5 Results from the global localization and loop closing experiments. The columns show the
precision (top) and recall (bottom) values for the fr-079, intel, mit-csail, fr-clinic, and Victoria Park
data sets, respectively. They demonstrate that FLIRT features are highly appropriate for global
localization or loop detection.
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obtain a ground truth map. The method typically produces maps within a precision
of several centimeters. We then proceed as follows with each log file: for each scan,
the scan is first removed from the map to exclude the trivial self-match and then
matched to all other scans in the map by the RANSAC procedure. The set of all
valid matches for a scan is said to be the solution set for that scan. If the solution
set contains a single match, the robot is uniquely localized. In case of environment
symmetries, multiple matches may occur which represent multiple pose hypotheses
for global localization or loop closure candidates for SLAM. In practice, the solu-
tion set contains mostly several matches even in the unique localization case. They
correspond to nearby poses that all pass the RANSAC test. The task is then to find
the best match for which two strategies are considered, the highest number of inliers
(corresp) or the lowest RANSAC error (residual).

To investigate the ability of FLIRT features to perform data association we check
if the match that corresponds to the true pose is in the solution set. A match is con-
sidered correct with respect to the ground truth, if the distance between its estimated
pose and the ground truth pose is within 0.5 meter and 10 degrees. Fig. 5 shows the
resulting precision-recall values. The top row of the figure shows the precision, the
bottom row shows the recall, both against different values for n}””’. We compare the
two above mentioned strategies to find the best match plus a third strategy, called
closest, that chooses the closest solution to the ground truth that passed n?'”'". This
strategy is the theoretically optimal one and demonstrates that a correct match is in
the solution set although it is not characterized by a maximum number of inliers or
a minimal error.

As can be seen, the approach has both high precision and high recall values, even
at small numbers of inliers. To further summarize the results, we define the prob-

| Data set | Size [m] | Scans | iirp | P& | Pic | PhrL | Plc | ton | tys |
fr079 (in) 50x20 1464 27 .98 .98 98 98 | 0.66s | 450us
intel (in) 50x40 2672 18 .98 .98 .96 .96 | 0.52s | 200us
csail (in) 80x 60 1051 23 .97 .97 .89 73 1 0.33s | 320us
fr-clinic (out) | 550x300 6917 34 .96 .96 .85 .65 | 6.45s | 930us
Victoria (out) | 500x500 5751 20 97 97 .79 .38 | 2.05s | 357us

Table 1 Summary of the global localization/loop closing experiment.
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Fig. 6 Global localization result in the Intel data set. Unique localization (left), ambiguous local-
ization with more than one hypotheses (right). Red triangles indicate pose hypotheses, the black
triangle show the ground truth.

ability of correct global localization from a single scan pgr and the probability of
correct loop closure from a single scan pcy. pgr is defined to be the precision value
at maximum recall which is the recall at the minimum number of inlier correspon-
dences (three). pcr. is defined to be the recall value at a precision of 0.95. To demand
a high precision is crucial for loop detection since incorrect loop closures can lead
to severe map inconsistencies.

Table 1 summarizes the RANSAC results for all five data sets. The columns are
environment size, number of scans in the map, the average number of interest points
per scan detected 7;p, the probabilities of correct global localization for the closest
and the residual strategy, pg;, pg;.» the probabilities of correct loop closure for both
strategies, p&;, pey» the total time for a single scan-to-map match tg, and the av-
erage time for a scan-to-scan match ty in a C++ implementation. All experiments
have been conducted using the same set of parameters.

The global localization and the loop closure probabilities are shown separately
for the strategies residual and closest. The probabilities of the closest strategy show
the ability of FLIRT to produce a solution set that approximates the distribution over
poses given observations and the map, p(x;|z;,m). This is relevant in a Bayesian fil-
tering schemes for pose tracking, for instance. With values higher than 0.96 across
all data sets, we conclude that the solution sets produced by FLIRT are highly ap-
propriate for this task.

The residual strategy is applied in a maximum likelihood estimation scheme
where, given a map, the robot pose is sought from a single scan. In this case, FLIRT
features enable an indoor robot to globally self-localize from a single scan with
a success probability of at least 89% within hundreds of milliseconds execution
time. Alternatively, the figures show that, with a confidence of 0.95, FLIRT fea-
tures are able to correctly identify a potential loop closure event from a single scan
with at least 73% probability. In the two outdoor environments these probabilities
are smaller. However, even for the Victoria park data set, the numbers mean that,
on average, we are still able to self-localize the robot every 1.3 scan and close a
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Fig. 8 SLAM experiment on the fr-clinic data set.

loop every 2.6 scan. Note also that the definition of pg; and pcp is conservative
in the sense that true positives are only counted in the 0.5m/10°-neighborhood of
the ground truth pose. In case of environment symmetries causing multiple modes
in the solution set, we only count matches in the mode of the ground truth which
further decreasing these resulting probabilities.

4.2 Simultaneous Localization and Mapping

Given the ability to globally localize or detect loops, we can address the SLAM
problem. We apply our SLAM algorithm onto two indoor data sets (intel and fr-
079) and an outdoor data set (fr-clinic). We further evaluate the robustness of FLIRT
with respect to environment dynamics using a data set collected at the Freiburg main
station during rush hour. The experiments have been conducted using the same set
of parameters for all data sets, where a number of inlier of 6 and a maximum average
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error per inlier of E,,,, = 0.05 are taken to assess a valid RANSAC match. For speed
reasons, we limit the number of constraints added at each time step to the best 15, in
order to not overly strain the optimization backbone. The resulting maps are shown
in Fig. 7 and 8. The high level of local connectivity in the pose graph illustrate the
view point invariance property of FLIRT. Even pairs of scans with marginal overlaps
from relatively far apart vantage points still produce valid constraints.

We repeated the experiments using the displacements from RANSAC matches
as initial estimates for scan matching. Employing ICP for this purpose, the resulting
indoor maps were even more accurate. However, in the outdoor data set, the use
of ICP produced sometimes worse results at places with no structure, very noisy
clutter, or 3D objects such as ramps. Then, RANSAC could not find valid matches,
and without ICP, our SLAM procedure fell back onto odometry. With scan matching
switched on, ICP attempted to find a match and failed, inserting incorrect constraints
into the pose graph.

This brings up the role of FLIRT as a detector of structuredness: a low number of
interest points is indication of a featureless place, a small inlier set at a high number
of interest points is indication of random clutter or 3D structures. In such situations
— that are straightforward to detect with a feature-based approach —, scan matching
is likely to fail and should be ignored. These results have been obtained with the
ICP method from [5]. Plain ICP has also been evaluated with worse results.

To further quantify the performance of FLIRT for the task of simultaneous lo-
calization and mapping, we compare our algorithm (Graph FLIRT) with the state-
of-the-art in dense grid mapping (RBPF) [8] and graph-based SLAM [9] with con-
straints computed by the method from Olson [15] (Graph Olson). For the compar-
ison, we employ the metric defined by Kiimmerle e al. [10]. The metric is based
on a set of relative relations between poses that are manually extracted from ground
truth trajectories. These relations are compared with their corresponding relations
from the trajectory estimated by the algorithm under consideration. For the fr-clinic
data set, two types of relations are considered: local and global relations. The reason
is to separately analyze the local and global consistency of the map.

The results, given in Table 2, show that our approach has similar performance
than the approach in [15] and largely outperforms the RBPF approach. The sim-
ilarity in performance with [15] is due to the fact that both methods use the same

| Dataset [RBPF (50 particles)|Graph Olson|Graph FLIRT]|

Translation error in m
fr079 0.06+£0.04 0.06+0.04 | 0.06+0.09
intel 0.07£0.08 0.03+£0.03 | 0.0240.02
fr-clinic (local) 0.64 +£2.64 0.14+0.18 | 0.18+0.27
fr-clinic (global) 12.3+11.7 11.6+11.9 8.3+8.6
Rotation error in degree
fr079 0.6+£0.6 0.6£0.6 0.8+1.1
intel 3.0+£53 1.3+4.7 0.3+0.3
fr-clinic (local) 1.3£23 09+2.2 0.9+2.0
fr-clinic (global) 5.5+59 6.3+6.2 5.0£53

Table 2 Residual errors of our approach and the state-of-the-art.
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Fig. 9 Results from odometry-free incremental mapping in the underground tunnel of the Freiburg
main station during rush hour (left: FLIRT, right: ICP). Despite the amount of dynamics, the
FLIRT-based method produces accurate maps. Both enlarged areas show a convex corner, a round
column and a triangular trash bin at the end of the exploration path. The two highlighted areas on
the right figure visualize typical situations during the experiment.

optimization back-end (TORO from [9]) but differ only on the front-end, that is how
the constraints are computed. Interestingly, our approach achieves better results for
global relations which means that it can better deal with global data association
which is generally harder than local data association where robot poses are approx-
imately known. Note that our approach is simply based on FLIRT and RANSAC to
generate constraints, whereas the method in [15] is much more complex.

In a final set of experiments, we evaluate the robustness of FLIRT for naviga-
tion in highly dynamic environments. To this end, we collected two data sets in the
Freiburg main station during rush hour. A first log files in a narrow underground
tunnel that connects the platforms, and a second log file around a loop through the
main hall and an adjacent platform. The first data set is particularly challenging as
the walls are feature-less and people can fill the entire width of the tunnel. Our setup
did not provide any dead reckoning sensor such as odometry. We therefore test the
ability of FLIRT to create maps from odometry-free incremental mapping. As de-
scribed in section 3.2, this is implemented by Algorithm 1 with % as the sliding
window from which scan are drawn for matching.

Fig. 9 and 10 show the results. Fig. 9 shows the results from the underground
tunnel both using FLIRT (left) and the ICP algorithm from [5] (right). The robot (a
manually pushed cart carrying a SICK LMS range finder) starts at the right end in
Fig. 9 (left) and enters the tunnel to the left. The enlarged portions of the map in
both subfigures shows the accuracy of the algorithms at the end of the trajectory.
In particular, it shows a convex corner, a triangular trash bin and a circular column.
The results show clearly that the FLIRT-based approach is much better in dealing
with environment dynamics than ICP, the objects are accurately registered. People
and other dynamic objects are shown by their blurred traces.

Fig. 10 shows the map from the second data set using both FLIRT (top) and
ICP [5] (bottom). The map contains a big loop of around 500m length that goes
from the main hall to the outdoor railway platform and reenters the building through
a long hallway with shops and restaurants. As can be seen from the enlarged part of
the images, FLIRT is able to create a clearly more precise incremental map.
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Fig. 10 Odometry-free incremental mapping (top: FLIRT, bottom: ICP). Results of the main hall
data set at the Freiburg main station during rush hour. The enlarged areas show the registration
error after completion of the 500m loop. Note that the map has been acquired incrementally, no
loop closure is performed. The map learned with FLIRT features is largely consistent.

5 Conclusions

In this paper we introduced the Fast Laser Interest Region Transform, a multi-scale
interest point operator for 2D range data. FLIRT features are generalized features
that make no assumptions about the structure of world. We applied FLIRT to robot
navigation tasks such as global localization, loop detection, incremental mapping
and SLAM using five standard data sets plus newly collected log files in dynamic
environments. We demonstrated that, to solve these tasks, not more than FLIRT,
RANSAC and an open source graph optimizer is needed. Accordingly, the related
algorithms become very compact.

From the experiments carried out in structured, unstructured, indoor, outdoor,
static and highly dynamic environments, we conclude that FLIRT is able to robustly
capture the invariant structures in the data. We achieved very high global localiza-
tion and loop detection probabilities from a single scan. As data association scales
linearly with map size, the method is also fast. The maps built with our FLIRT
approach are consistent and accurate. Using a recently introduced SLAM metric,
FLIRT maps are better or on par with the state-of-the-art while being algorithmically
simpler. In a final set of odometry-free incremental mapping experiments using data
from our main station during rush hour, we analyzed the ability of the approach to
cope with highly dynamic environments. Compared to a recent ICP variant, FLIRT
produced clearly more consistent and accurate maps.

Besides being a front-end for robot navigation that provides robust constraints,
FLIRT opens up new ways to process 2D range data including the uniform treatment
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of range and image data. This includes early fusion with vision, for instance, in
voting-based detection schemes.

The data sets and the source code of FLIRT is available on the authors website at

http://srl.informatik.uni-freiburg.de/~tipaldi/FLIRTLib.
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