
Abstract – Progress in mobile robotics requires the re-
searchers to access and improve all modules that compose
the robot, from low-level mechanical components to high-
level reasoning systems. This paper presents the develop-
ment process of the robots built at the Autonomous Sys-
tems Lab, EPFL Lausanne, Switzerland. Starting from
the mechanical and electrical design up to the application,
we show the challenges that needed to be faced as well as
the solutions that have been devised. The description cov-
ers aspects like the operating system and framework, be-
cause of its role in the overall safety and dependability of
the whole software system, the research as a precondition
for innovative products, and the man-machine interface,
which is indispensable for conveying information to the
user as well as allowing the user to interact with the robot.
The issues that have been faced stem from the hierarchi-
cal, layered construction of a complex mechatronic prod-
uct, where the operation of the machine depends on the
smooth cooperation of each layer; In the same way, the
overall safety is undermined by the least reliable piece
building the system.1 2

Index Terms – Mechatronic, Complexity

I. INTRODUCTION

Mechatronic is a highly interdisciplinary domain, where en-
gineers with different specialization like mechanics, electron-
ics and computer science collaborate with other scientists
from more classical domains like mathematics and physics.
Because of the sheer amount of people involved, mechatronic
product development is extremely difficult. Generally speak-
ing, a mechatronic system consists of several layers (fig. 1),
where each layer is able to perform correctly only when the
underlying one is behaving correctly, too. The number of in-
terfaces between layers leads to an explosion of the overall
complexity of the system, thus rendering the development er-
ror prone, and the testing extremely difficult. More precisely,
the testing is of outmost challenge because errors are difficult
to isolate, as they are often non-repeatable or even due to the
wrong interaction of a constellation of layers.

This paper presents the Autonomous Systems Lab’s ap-
proach to the development of self-contained, autonomous
mobile robots. The reliability of mechanical and electronic
hardware can be achieved by using industry-standard, off-
the-shelves solutions. The wide deployment has already dem-

onstrated (and contributed to) their high degree of depend-
ability, if not by design at least by brute force.

The choice of the computer science paradigms is by orders
of magnitude more complex. The situation is rendered more
unfortunate by the fact that most of the mobile robotics re-
search makes use of computer science as the primary tool for
realizing itself. We argue that the careful choice of the com-
puter science paradigms, not only eases the development of
the proposed innovations, but also fosters them, since the im-
plementor relieved from the computer science issues can bet-
ter focus on the problem to be solved.

II. THE MOBILE ROBOT: A COMPLEX
MECHATRONIC SYSTEM

Mobile robots are still not consumer products. Nevertheless,
the success in the research and some innovative products are
showing that the time is ripe for popular acceptance. Mobile
robots are a great example of the complexity of mechatronic
products as they highlight the most dramatic problems and re-
quirements of this domain: Safety, reliability and robustness
are the required preconditions from actuators, sensors, elec-
tronics, embedded operating system and application pro-
grams present in a mechatronic application.

A. Our Autonomous Robots

The Autonomous Systems Lab, EPFL Lausanne, Switzer-
land, recently built three mobile robots (fig. 2). While they
are mainly used for research purposes, they have been crafted
by taking into account the application requirements. Because
of this, autonomy with respect to perception, energy and
processing for fully self-contained autonomous decision-
making mobile machines has been addressed in its full com-
plexity already as a research topic.

1. Autonomous Systems Lab, Swiss Federal Institute of Technology
Lausanne (EPFL), CH–1015 Lausanne, (n.tomatis@ieee.org).

2. Institute of Robotics, Swiss Federal Institute of Technology
Zurich (ETHZ), CH–8092 Zürich, (brega@ifr.mavt.ethz.ch).

User

Mechatronic Product

Figure 1: Abstract view showing the components of a
mechatronic system. Note that the performance of each layer
relies on the correctness of the underlying layer.

Mechanics
Electronics

Computer Hardware
Operating System

Application Programs
Man-Machine Interface

A Complex Mechatronic System: from Design to Application

Nicola Tomatis†, Roberto Brega‡, Kai Arras†, Björn Jensen†, Benoit Moreau†, Jan Persson†, Roland Siegwart†

†

‡

278278



B. Mechanics

Pygmalion, Donald and Daffy Duck are built using a differen-
tial drive technique. This means that there are two driving
wheels and one castor wheel for the balancing. The castor
wheel can rotate effortlessly around its own axis. The axis of
the two driving wheels are fixed, while the rotational velocity
of each wheel can be controlled separately giving a rotation
point in the middle of the wheel axis. Furthermore, Pygmal-
ion has tactile zones at two different heights, used as emer-
gency bumpers.

C. Electronics

The controller consist of a VME standard backplane, where a
Motorola MVME 2300 board with a PowerPC 604ev micro-
processor, clocked at 300 Mhz, is used as the sole processing
unit. A VME-based six-axis controller is used for driving the
wheels. Among the various peripheral devices, all the robots
have three main sensors: the wheel encoders, two SICK LMS
200 laser range finders, allowing for a 360˚ view, and a Pulnix
CCD camera. Additionally, Daffy Duck has a pan-tilt device
upon which a colour CCD camera is mounted. Batteries en-
sure an autonomy of approximately 4 hours.

III. OPERATING SYSTEM AND DEVELOPMENT
ENVIRONMENT: XO/2

The application software is deployed on top of the XO/2 op-
erating system [3]. XO/2 is an object-oriented, hard-real time
system software and framework, designed for safety, extensi-
bility and abstraction. It takes care of many common issues
faced by programmers of mechatronic products, by hiding
general design patterns inside internal mechanisms or by en-
capsulating them into easy-to-understand abstractions. Care-
ful handling of the safety aspects has been the criterion by
which the system has been crafted. These mechanisms, perva-
sive yet efficient, allow the system to maintain a deus ex-
machina knowledge about the running applications, thus pro-
viding higher confidence to the application programmer. The
latter, relieved from many computer-science aspects, can bet-
ter focus his attention to the actual problem to be solved. The
following sections will highlight some of the aspects of the
XO/2 real-time operating system that are most relevant for
deployment in a state-of-the-art mechatronic product.

A. Automatic Memory Reclamation

The highly efficient engineering of an application software
asks for a highly dynamic, object-oriented, composable soft-
ware system. Unfortunately, in such an environment the cen-
tral knowledge of all references that exist for a particular
object becomes hard to maintain as the dynamic loading of
extensions augments. Even worse, it becomes impossible for
a programmer to keep track of references in a safe way when
the language doesn't impose restrictions on the passing and
copying of references. This brings us to the sheer conclusion
that in a dynamically extensible system, explicit deallocation
of objects is not feasible.

The only safe possibility for object reclamation is by means
of a system-wide mechanism performing automatic storage
reclamation: a so-called garbage collector. A garbage collec-
tor decides upon the liveness of heap objects by their reach-
ability, starting from a working set of global and local
references. After complete traversal of the heap data struc-
tures, objects that haven't been visited by the collector's mark-
ing get disposed.

XO/2 deploys a very robust, real-time compatible mark-
and-sweep garbage collector with object-finalization that
combines good collection performance with no memory re-
quirements at execution time [4]. The latter is more important
when the collector is kicked by a low-memory condition, i.e.
it can complete the traversal and the collection of the heap-
space without demanding memory. Moreover, the proposed
solution works very well in a pre-emptive scheduling envi-
ronment, without blocking nor delaying tasks performing ac-
cesses to objects.

B. Modularisation

One of the most important design principle is the separation
of concerns. This principle requires a system to be structured
into subsystems, also called modules. Modules should expose
an interface by exporting functions to the clients. The func-
tionality of a module is accessed only by means of its inter-
face; The interface can be generalized enough to hide most of
the implementation details, thus establishing and guarantee-
ing invariants for its states and procedures. Disjoint, orthogo-
nal modules implementing this design principle can be
exchanged without invalidating clients, therefore leading to
the dynamic composition of the system.

An important precondition for the realization of this design
principle is the presence of safe dynamic loading and unload-
ing of compiled units. XO/2 provides the required safety by
checking at compile time and at linking-loading time the for-
mal interfaces against the actual ones. Only interface-compat-
ible modules may be loaded in the system, thus posing no
threat to the safety of the dynamic composition. The safe un-
loading of modules is achieved by means of reference count-
ing, lexical scopes and virtual memory ranges, effectively
guaranteeing that an entity used by the embedded system will
not be unloaded or that stale references will be trapped before
execution.

igure 2: The three robots at the Autonomous Systems Lab:
Pygmalion, Donald Duck and Daffy Duck.

279279



Safe dynamic loading and unloading, along with very short
edit-compile-run cycles, has been one of the most appreciated
features of XO/2. In fact, during the development of a com-
plex application, different programmers can safely test new
code modules without undermining the stability of the system
and applications.

C. Process Scheduling
The principal responsibility of a real-time operating system
can be summarized as that of producing correct results while
meeting pre-defined deadlines. Therefore, the computational
correctness of the system depends on both the logical correct-
ness of the results it produces, and the timing correctness, i.e.
the ability to meet the deadlines of its computation.

A real-time application can be modelled as a set of cooper-
ating tasks. These tasks can be classified according to their
timing requirements, as hard–real-time, and non–real-time. A
hard–real-time task is a task whose timely execution is la-
belled as critical to the operation of the whole system. Conse-
quently, it is assumed that the missing of the deadline can
result in a system failure. Non–real-time tasks are those tasks
that exhibit no real-time requirements (e.g. system mainte-
nance tasks running in the background).

Mainstream real-time operating systems implement real-
time timing constraints by means of a priority-based, inter-
rupts-based solution. The weakness of this approach relies in
the fact that the mapping of the real-time problem from the
application space –whose metric is specified in seconds– to
the implementation space –whose metric is some artificial
value called priority– is left to the application programmer.
This approach severely hinders software composition and the
deterministic behavior of the software constellation. The first
issue stems from the fact that the programmer cannot rely in
the third party compliance to some guidelines about priorities.
The non-deterministic behavior is a side effect of relying on
asynchronous, sometimes external events for deciding the
time execution paths.

XO/2’s real-time task manager implements a static, earliest-
deadline-first scheduling algorithm with admission testing.
With this algorithm, the pool of real-time tasks is statically
sorted according to their deadlines. The first one, i.e. the one
with the shortest deadline, will be set for execution by the
scheduler. This task will remain in the foreground, until its
normal execution cycle is completed, or when a task charac-
terized by a shorter deadline has been activated by the occur-
rence of some event, such as the expiration of a waiting period
or the user intervention. The process manager is also respon-
sible for dispatching non–real-time tasks, also called threads.
Since their computations can be delivered any time, threads
are brought to the foreground only when no other real-time
task is pending, waiting for being dispatched. The non–real-
time scheduler chooses the thread to be scheduled according
to its priority. Threads carrying the same priority are taken in
the foreground in a round-robin fashion. Anti-starvation
mechanisms and priority inheritance guarantee fairness and
progress.

D. Approximation of the Worst-Case Execution Time

The control of many complex mechatronic products requires
for each task the Worst Case Execution Time (WCET), which
is needed for the scheduler’s admission tests and subsequent-
ly limits a task’s execution time during operation. If a task ex-
ceeds the WCET, this situation is detected and either a
handler is invoked or control is transferred to a human opera-
tor. Such control systems usually support pre-emptive multi-
tasking, and if an object-oriented programming language
(e.g., Java, Oberon) is used, then the system may also provide
dynamic loading and unloading of software components.

Only modern, state-of-the art microprocessors can provide
the necessary computation cycles, but this combination of
features (preemption, dynamic un/loading of modules, ad-
vanced processors) creates unique challenges when estimat-
ing the WCET. Preemption makes it difficult to take the state
of the caches and pipelines into account when determining the
WCET, yet for modern processors, a WCET based on worst-
case assumptions about caches and pipelines is too large to be
useful, especially for big and complex real-time products.
Since modules can be loaded and unloaded, each task must be
analyzed in isolation, without explicit reference to other tasks
that may execute concurrently.

To obtain a realistic estimate of a task’s execution time,
XO/2 uses static analysis of the source code combined with
information about the task’s runtime behavior. Runtime in-
formation is gathered by the performance monitor that is in-
cluded in the processor’s hardware implementation. The
predictor [7] is able to compute a good estimation of the
WCET even for complex tasks that contain a lot of dynamic
cache usage, and its requirements are met by today’s perfor-
mance monitoring hardware.

IV. RESEARCH

The mechatronic research represents a valid starting point for
innovative applications and products only when researchers
address fundamental questions by taking into account appli-
cation relevant limitations and problems. Our research focus-
es on fundamental questions about sensor modelling,
localization, map building, obstacle avoidance, motion con-
trol and man-machine interaction. The next sections will
present some results achieved in these domains.

A. Sensors and Modelling

The mobile robots have three main sensors: the wheel encod-
ers, a 360˚ laser range finder and a CCD camera. In order to
optimise the perception, the first step that has to be taken cen-
tres around the modelling. Measurements are –intrinsically–
uncertain. By knowing the physical characteristics of the ap-
plied sensors, uncertainties can be isolated, modelled and
propagated up to the application level. This allows us to com-
bine the use of probability theory to represent the uncertainty
of the geometric elements of the environment and of the robot
as well. Moreover, probabilistic position estimators have
turned out to be much more reliable.

280280



1) Wheel Encoders (Odometry)
Non-systematic odometry errors occur in two spaces: the
joint space and the Cartesian space. Effects of wheel slippage,
uneven ground and limited encoder resolution appear in the
joint space. They are modelled by means of the physically
well-grounded model presented in [6].

Effects of external forces (mainly collisions) occur in the
Cartesian space. However, they are even more difficult to
model because of their unpredictablity. This is the reason why
they are not taken into account in our approach.

2) Laser Range Finder
In this case the constant uncertainty given by the supplier of
the sensor has been adopted.

3) Camera
The camera system is calibrated by combining the method de-
scribed in [11] with the spatial knowledge from a test field.
This provides a coherent set of extrinsic, intrinsic and distor-
tion parameters. Uncertainties from the test field geometry as
well as those caused by noise in the camera and acquisition
electronics are propagated through the camera calibration
procedure onto the level of the camera parameters.

B. Multisensor Metric Localization

Having a multisensor setup allows for the use of different fea-
tures with complementary characteristics, leading to a conse-
quent growth in robustness and precision. This section
addresses the question of how to combine data from different
sensors.

1) Environment Representation
Features are infinite horizontal lines for the laser range finder
and vertical edges for the vision system. The a priori map con-
tains 191 infinite lines and 172 vertical edges for the

m portion of the institute building shown in fig. 3.
This environment model distinguishes itself by its extreme
compactness, having a memory requirement of about

.

Laser Range Finder: The algorithm for line extraction has al-
ready been used in [1]. It performs three main steps:
• Model independent segmentation on groups of points.
• Nonlinear regression fitting.
• Association by means of clustering with Mahalanobis dis-

tance matrix.
The method delivers lines and segments with their first order
covariance estimate using polar coordinates.

Camera: Vertical lines are extracted in four steps:
• Vertical edge enhancement with a specialized Sobel filter.
• Non-maxima suppression using dynamic thresholding.
• Edge image calibration: The horizontal position of each

edge pixel is corrected.
• Line fitting reduces to a one-dimensional problem for each

image column.
Uncertainty from the camera electronics is modelled on the
level of the uncalibrated edge image. Together with the uncer-
tainty of the calibration parameters it is propagated through

calibration and line fit, yielding the first two moments of the
vertical edges.

2) Enhanced Kalman Filter (EKF) Navigation
For metric localization an extended Kalman filter is used. A
localization cycle consists of five steps [5], [8]:

State prediction: The state and its associated covariance are
determined from the odometry based on the previous first and
second state moments.

Observation: The parameters of the extracted feature consti-
tute the vector of observations and its associated observation
covariance matrix.

Measurement prediction: The modeled features in the map
get transformed into the frame of the observations. The first
moments are computed by the global-to-local transform. Er-
ror propagation is done by a first-order approximation which
requires the Jacobian with respect to the state prediction.

Matching: Since the Kalman filter represents and propa-
gates a single Gaussian distribution for the robot pose, false
pairings can lead to irreversible filter divergence, i.e. a lost-
situation asking for manual intervention. The matching step is
therefore of high importance. Because of this the laser obser-
vations are integrated first, since they typically exhibit far bet-
ter mutual discriminance, thus making their matching less
error-prone. These are followed by the vertical edges from the
camera, where ambiguous matching situations often occur.

Estimation: Successfully matched observation and predic-
tions are then used to compute the a-posteriori estimates of
the robot pose and associated covariance.

3) Results
The goal of this approach was, on the one hand, to have a val-
id EKF implementation for our robots and, on the other hand,
to compare the laser-only configuration against the laser and
vision setup. For this comparison Pygmalion ran the trajecto-
ry shown in fig. 3 ten times, five with the laser-only configu-
ration and five with laser and vision [1].

The results are summarized in table 1. The error bounds
show that, based on the uncertainty model, the robot is with a
95% probability within twice this value. The vision informa-
tion reduces this uncertainty in and in equal measure (-
20%), but particularly in the orientation (-40%). This holds,
even if the number of matched vertical edges is moderate.

50 30×

30 bytes m 2⁄

75 80 85 90 95 100 105 110 115

igure 3: The 140m trajectory. Pygmalion ran five runs with
laser-only localization and five runs with laser and vision.

x y

281281



C. Obstacle Avoidance and Motion Planning

Obstacle avoidance in mobile robotics is the problem of mov-
ing from a starting point to a given goal with an arbitrary con-
stellation of obstacles. For this, the approach has to take the
kinematic and sensing capabilities of the robots into account.

The algorithm we devised has been split into two indepen-
dent modules: the first one implementing local obstacle
avoidance and the second one implementing a path planner
which generates a path of points from the start to the goal
[10]. The local obstacle avoidance is based on the Dynamic
Window approach. The safe robot behavior is ensured by se-
lecting only motion commands that allow the robot to come
to a halt before collision. Above the dynamic window there is
a path planner which gives intermediate goal points to the lo-
cal obstacle avoidance. The path planner makes use of the dis-
tance transform which is a grid-based wave propagation
technique: The raw laser scan points are put into a grid, a
wave propagates from the goal point until all points in the grid
have been reached. A path from the start to the goal is even-
tually found by following the negative gradient from the start.

D. Man-Machine Interaction

Man-machine interaction is the layer closest to the end-user
and therefore the information presented has to be suitable for
human beings. Since interaction is the bi-directional ex-
change of information, this layer has to service input devices
as well as output channels (fig. 4).

1) Physical Interaction
For the physical interaction the CCD camera is used as an in-
put device locating human beings in the environment. The ro-
bot detects human motion using statistical change detection
algorithms. Output devices are the pan-tilt head being direct-
ed towards the chosen user, which is addressed by the robot
with synthesized speech. Simple tracking algorithms allow
the robot to interact with the person even when he is moving.

2) Web-Interfacing
Testing algorithms like localization and obstacle avoidance
on an autonomous self-contained robot requires a means for
the researcher to check the algorithmic reactions to the ma-
chine’s perception of the world. However the perceived data
and the processing results remain embedded in the mobile ve-
hicle until they are explicitly transferred to a local PC for

analysis. This can be done by tracing the robot position
(odometry), by saving all the raw data from the sensors, the
extracted features and the results of each algorithm, then by
transferring this information when an experiment is finished
and analysis is performed off-board. Nevertheless, this proce-
dure has several disadvantages mainly due to the lack of cor-
respondence between the behaviour of the robot and its data.
On-line supervision (as web-interface in fig. 5) is therefore
not an option, it is instead an important tool for speeding up
the advances in applications such as mobile robotics research
by allowing on-line detection of characteristics of the tested
approaches [9].

V. THE APPLICATION: REMOTE EXPLORATION

The “Computer” trade show is an annual fair for computer
hard- and software at the Palais de Beaulieu Exposition Cen-
tre in Lausanne, Switzerland. Our laboratory was present dur-
ing the four days –from May 2nd to May 5th 2000– giving
visitors the opportunity to control Pygmalion by means of
web-interfacing (fig. 5), while the robot itself was at EPFL.

The Computer 2000 event was the final testbed for our met-
ric localization system, where we were mainly interested in
long-term reliability under application-like conditions [2].
Furthermore, it was a great way to test our approaches in
physical man-machine interaction (fig. 4) and web-based in-
terfaces (fig. 5). The setup was active during normal office
hours with an average of about 7 hours up-time per day. The
environment exhibited typical dynamics from people, doors,
chairs and other robots, as well as daylight illumination. Sev-
eral doors were open into the corridor, thus limiting the space
available for robots maneuvers. Travel speed has been limited
to 0.4 m/s since the robot had to share its environment with
persons, some of them not engaged into robotics. The obsta-
cle avoidance was active during the event. The web-interface
(fig. 5) allowed to give navigation commands (e.g. go to of-
fice) to the robot.

Laser Laser and vision

1.31 cm 1.07 cm

1.35 cm 1.05 cm

0.92° 0.56°

2.73 / – 2.66 / 2.00

64 ms 411 ms

Table 1: Overall mean values of the error bounds, the
number of matched lines and matched vertical edges

, and the average localization cycle time.

2σx

2σy

2σθ

nl nv⁄

texe

nl
nv

Figure 4: Daffy, after
detecting a young vis-
itor, interacts with
him by speaking,
tracking him and
moving the pan-tilt
head for mimicking
expressions. It detects
human movement by
means of the CCD
camera and closes
the interaction loop
with its speech syn-
thesizer and gestures
as a combination of
robot and pan-tilt
movement.

282282



A. Results

The event statistics of Computer 2000 are shown in table 2. A
lost situation is defined as a mission whose goal could not be
achieved due to a localization error and which required man-
ual intervention in order to re-localize the robot. Missions
where the robot went lost due to a collision with an invisible
object (e.g. glass door or object lower than the beam height of
the scanner) and where the robot was already lost (after such
a collision) have not been considered.

When many people are around the robot or when the odom-
etry delivers inconsistent estimates due to uneven floors, it
can happen that there are no matched features during a certain
period. We counted 14 out of 724 missions where the robot
had no matches during 10 seconds, and 21 missions where it
had no matches during 5 seconds. None of them required
manual intervention during or after the mission.

We had therefore no loss situations due to localization.
However, in about ten cases the robot required human inter-
vention due to collisions with “ghost” objects.

Feedback from visitors about man-machine interaction was
very positive: Daffy (fig. 4) was the main attraction of our
stand and the interface turned out to be very user-friendly.

VI. CONCLUSIONS

Mobile robots are complex mechatronic products that empha-
size requirements like safety, reliability and robustness. The
very same requirements define the overall performance of the
robot by posing threats to its run-time safety. They act as pre-
conditions for all the robot's components: Actuators, sensors,
electronics, embedded operating system and application pro-
grams have all to show the same quality, since the overall
safety is undermined by the least reliable piece building the
system.

This paper presented the Autonomous Systems Lab’s ap-
proach to the development of self-contained, autonomous
mobile robots, their challenges and the devised solutions.
Backed up by the experience we collected, we argue that
progress in mobile robotics requires the researchers to access
and improve all modules that makes up the system, from low-
level mechanical components to high-level reasoning sys-
tems. Moreover, besides the choice of the hardware (often
straightforward), the computer science paradigms are crucial,
since they play a primary role during the development of the
intelligent mechatronic products. XO/2, an object-oriented,
hard-real time operating system has been adopted, because of
its support for safety, extensibility and abstraction.

Research has been described as an important step to innova-
tive products. The results of our research culminated in a real
application. The remote exploration application has been pre-
sented at the “Computer 2000” trade show in Lausanne, Swit-
zerland, where the visitors were able to control Pygmalion by
means of a web-interface.

REFERENCES

[1] Arras, K., N. Tomatis, et al. (2000). Multisensor On-the-Fly Localiza-
tion Using Laser and Vision. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2000), Takamatsu, Japan.

[2] Arras, K. O., N. Tomatis, et al. (2000). “Multisensor On-the-Fly Lo-
calization: Precision and Reliability for Applications”. To appear in
Journal of Robotics and Autonomous Systems.

[3] Brega R. (1998). A real-time operating system designed for predict-
ability and run-time safety. In Proc. of The Fourth Int. Conf. on
Motion and Vibration Control (MOVIC), Zurich.

[4] Brega R., G. Rivera. (2000). Dynamic Memory Management with
Garbage Collection for Embedded Applications. USENIX Workshop
on Industrial Experiences with Systems Software (WIESS 2000), San
Diego, CA.

[5] Bar-Shalom Y., T.E. Fortmann. (1988). “Tracking and Data Associa-
tion”, Mathematics in Science and Engineering, Vol. 179, Academic
Press Inc., 1988.

[6] Chong, K.S. and L. Kleeman (1997). Accurate Odometry and Error
Modelling for a Mobile Robot, IEEE International Conference on Ro-
botics and Automation, NM, USA.

[7] Corti, M., R. Brega. et al. (2000). Approximation of Worst-Case Exe-
cution Time for Preemptive Multitasking Systems. ACM SIGPLAN
LCTES'2000 (Workshop on Languages, Compilers, and Tools for Em-
bedded Systems), Vancouver B. C., Canada.

[8] Crowley, J.L. (1989). World Modeling and Position Estimation for a
Mobile Robot Using Ultrasonic Ranging, IEEE International Confer-
ence on Robotics and Automation, Scottsdale, AZ.

[9] Moreau, B., N. Tomatis et al. (2000). Multimodal Web Interface for
Tasks Supervision and Specification. Proceedings of SPIE Vol. 4195:
Telemanipulator and Telepresence VII. Boston, USA.

[10] Persson, J. (2000). Obstacle Avoidance for Mobile Robotics. Diploma
thesis, Dept. of Electrical Eng., Linköpings University, Linköpings,
Sweden.

[11] Prescott, B., G. F. McLean (1997). Line-Based Correction of Radial
Lens Distortion. Graphical Models and Image Processing. 59(1).

Figure 5: The Pygmalion web-interface, a plug-in-free Net-
scape application. It provides context-sensitive menus on the
map and all subwindows with intuitive click-and-move-there
commands for robot teleoperation. Feedback is given by
means of images of the raw and localization data from the
laser range finder (top-left), an embarked camera (top mid-
dle), an external web-cam (top-right) and the robot ani-
mated in its model map (left middle).

Hours of operation 28

Environment size 50 x 30 m

Environment type office, unmodified

Overall travel distance 5,013 m

Average speed 0.2 m/sec

Number of missions 724

Number of localization cycles 145,433

Number of lost-situation 0

Number of unknown collisions ~ 10

Table 2: Overall statistics for the Computer 2000 event.

283283


